Answer:
a
x
2
+
b
x
+
c
=
0
the two roots of the equation take the form
x
1
,
2
=
−
b
±
√
b
2
−
4
a
c
2
a
So, start by adding
−
5
to both sides of the equation to get
2
x
2
+
x
−
5
=
5
−
5
2
x
2
+
x
−
5
=
0
Notice that you have
a
=
2
,
b
=
1
, and
c
=
−
5
. This means that the two solutions will be
x
1
,
2
=
−
1
±
√
1
2
−
4
⋅
2
⋅
(
−
5
)
2
⋅
2
x
1
,
2
=
−
1
±
√
41
4
You can simplify this if you want to get
x
1
=
−
1
+
√
41
4
≅
1.35078
and
x
2
=
−
1
−
√
41
4
≅
−
1.85078
Answer:
1.512445e+216
Step-by-step explanation:
<h3>
<u>Given</u><u> </u><u>:</u></h3>
- Length =
cm. - Breadth =
cm.
<h3>
<u>To</u><u> </u><u>Find</u><u> </u><u>:</u></h3>
The area of rectangle.
<h3>
<u>Solution</u><u> </u><u>:</u></h3>
Area of rectangle = Length × Breadth




<h3>
<u>Area</u><u> </u><u>of</u><u> </u><u>rectangle</u><u> </u><u>is</u><u> </u><u>4</u><u>2</u><u>5</u><u>/</u><u>4</u><u>2</u><u> </u><u>cm</u><u>²</u><u>.</u></h3>
A. Area of ABCD - Area of DGA = Area of DEFG
s^2 - 1/2bh = s^2
(5)^2 - 1/2(4)(3) = (3)^2
25 - 1/2(12) = 9
25 - 24 = 9
1 not equal to 9
B. Area of ABCD - Area of GHIA = Area of DGA
s^2 - s^2 = 1/2bh
(5)^2 - (4)^2 = 1/2(4)(3)
25 - 16 = 1/2(12)
9 not equal to 6
C. Area of ABCD + Area of DGA = Area of GHIA
s^2 + 1/2bh = s^2
(5)^2 + 1/2(4)(3) = (4)^2
25 + 1/2(12) = 16
25 + 6 = 16
31 not equal to 16
D. Area of DEFG + Area of GHIA = Area of ABCD
s^2 + s^2 = s^2
(3)^2 + (4)^2 = (5)^2
9 + 16 = 25
25 = 25
The answer is D.
|x| = x for x ≥ 0
examples:
|3| = 3; |0.56| = 0.56; |102| = 102
|x| = -x for x < 0
examples:
|-3| = -(-3) = 3; |-0.56| = -(-0.56) = 0.56; |-102| = 102
--------------------------------------------------------------------------------
Use PEMDAS:
P Parentheses first
E Exponents (ie Powers and Square Roots, etc.)
MD Multiplication and Division (left-to-right)
AS Addition and Subtraction (left-to-right)
--------------------------------------------------------------------------------

Put the values of x to the equation of the function h(x):
