Answer:
23 W/K
Explanation:
Entropy of water at 15°C is 224.5 J/kg/K.
Entropy of water at 15.2°C is approximately 227.4 J/kg/K (interpolated).
The increase in entropy is therefore:
227.4 J/kg/K − 224.5 J/kg/K = 2.9 J/kg/K.
So the rate of entropy generation is:
2.9 J/kg/K × 8 kg/s = 23.2 W/K
Rounded to two significant figures, the rate is 23 W/K.
Answer and Explanation:
Dead state can be defined as the state in which both the are ambient properties and the system properties are coincident to each other.
Since the surroundings are similar and these surroundings are fixed also, there will be no kinetic energy and also the gravitational potential energy for both the systems is also equal.
Practically, in thermodynamic studies, the Gravitational potential energy of the system is negligible. This state holds significance because it leads to the termination of all the processes that are spontaneous in nature.
Answer:
Iron is manufactured in a blast furnace. First, iron ore is mixed with coke and heated to form an iron-rich clinker called 'sinter'. Sintering is an important part of the overall process as it reduces waste and provides an efficient raw material for iron making. Coke is produced from carefully selected grades of coal.
Copper is typically extracted from oxide and sulfide ores that contain between 0.5 and 2.0% copper. ... Regardless of the ore type, mined copper ore must first be concentrated to remove gangue or unwanted materials embedded in the ore. The first step in this process is crushing and powdering ore in a ball or rod mill.
Answer: OHMMETER & MEGOHMMETER:
Explanation: The ohmmeter measures circuit resistance; the megohmmeter measures the high resistance of insulation. A meter used to measure electric current. It is connected as part of a circuit.
Answer:
The answer is 960 kg
Explanation:
Solution
Given that:
Assume the initial dye concentration as A₀
We write the expression for the dye concentration for one hour as follows:
ln (C₁) = ln (A₀) -kt
Here
C₁ = is the concentration at 1 hour
t =time
Now
Substitute 480 g for C₁ and 1 hour for t
ln (480) = ln (A₀) -k(1) ------- (1)
6.173786 = ln (A₀) -k
Now
We write the expression for the dye concentration for three hours as follows:
ln (C₃) = ln (A₀) -k
Here
C₃ = is the concentration at 3 hour
t =time
Thus
Substitute 480 g for C₃ and 3 hour for t
ln (120) = ln (A₀) -k(3) ------- (2)
4.787492 = ln (A₀) -3k
Solve for the equation 1 and 2
k =0.693
Now
Calculate the amount of blue present initially using the expression:
Substitute 0.693 for k in equation (2)
4.787492 = ln (A₀) -3 (0.693)
ln (A₀) =6.866492
A₀ =e^6.866492
= 960 kg
Therefore, the amount of the blue dye present from the beginning is 960 kg