Answer: 45.3°
Explanation:
Given,
Length of ladder = l
Weight of ladder = w
Coefficient of friction = μs = 0.495
Smallest angle the ladder makes = θ
If we assume the forces in the vertical direction to be N1, and the forces in the horizontal direction to be N2, then,
N1 = mg and
N2 = μmg
Moment at a point A in the clockwise direction is
N2 Lsinθ - mg.(L/2).cosθ = 0
μmgLsinθ - mg.(L/2).cosθ = 0
μmgLsinθ = mg.(L/2).cosθ
μsinθ = cosθ/2
sin θ / cos θ = 1 / 2μ
Tan θ = 1 / 2μ
Substituting the value of μ = 0.495, we have
Tan θ = 1 / 2 * 0.495
Tan θ = 1 / 0.99
Tan θ = 1.01
θ = tan^-1(1.01)
θ = 45.3°
Answer:
The power she can generate is 185.22 KW.
Explanation:
<h3><u>DATA</u></h3>
3.00m wide and 0.500m deep.
Cross sectional area = 1.500m^2
Velocity = 1.35m/s
Volumetric flow rate = Av = 18.00m^3/s
Mass flow rate = 18,000kg/s
Height = 4.20m
25.0% efficiency
<h3><u>
FORMULA:</u></h3>
P = dE / dt * eff
<h3><u>
SOLUTION:</u></h3>
18,000kg/s (9.8m/s^2) (4.20m) (25%) = 185,220 watts
= 185 kw
<h3><u>Answer;</u></h3>
Velocity and wavelength are directly proportional when frequency is kept constant.
<h3><u>Explanation;</u></h3>
- <em><u>Frequency of a wave is the number of complete oscillations made by a given wave in one second. </u></em>
- <em><u>Wavelength on the other hand, is the distance between two successful crests or troughs in a transverse wave or two successful rarefactions or compressions in a longitudinal waves.</u></em>
- <em><u>The speed of a wave is given by the product of the frequency of a wave and the wavelength.</u></em>
- <em><u>Speed = Frequency × wavelength, </u></em>
- <em><u>Therefore, if frequency is kept constant, then the speed of a wave is directly proportional to the wavelength, such that an increase in wavelength increases the speed of the wave and vice versa.</u></em>