1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
puteri [66]
3 years ago
9

Consider a basketball player spinning a ball on the tip of a finger. If a player performs 1.91 J1.91 J of work to set the ball s

pinning from rest, at what angular speed ????ω will the ball rotate? Model a basketball as a thin-walled hollow sphere. For a men's basketball, the ball has a circumference of 0.749 m0.749 m and a mass of 0.624 kg0.624 kg .
Physics
1 answer:
Black_prince [1.1K]3 years ago
7 0

Answer:

ω = 4.07 rad/s

Explanation:

By conservation of the energy:

W = ΔK

1.91J = I/2*\omega^2

where I = 2/3*m*R^2=0.23kg.m^2

Solving for ω:

\omega = \sqrt{W*2/I} =4.07rad/s

You might be interested in
Calculate the translational speed of a cylinder when it reaches the foot of an incline 7.05 mm high. Assume it starts from rest
mestny [16]

Height is 7.05 m and not 7.05 mm

Answer:

9.603 m/s

Explanation:

We are dealing with rotation, so velocity of centre of mass is given by;

v_cm = Rω

Since we are working with a solid cylinder, moment of inertia of the cylinder is; I = ½mR²

Since it is rolled from the top to the bottom, at the top it will have potential energy(mgh) while at the bottom it will have kinetic energy (rotational plus translational kinetic energy).

Using conservation of energy, we have:

P.E = K.E_t + K.E_r

Formula for rotational and kinetic energy here are;

K.E_t = ½mv²

K.E_r = ½Iω²

mgh = ½mv² + ½Iω²

Since we want to find translational speed(v), let's get rid of ω.

Earlier, we saw that v_cm = Rω

Thus; ω = v/R

Also, we know that I = ½mR².

Thus;

mgh = ½mv² + ½(½mR²)(v/R)²

This gives;

mgh = ½mv² + ¼mv²

Divide through by m to get;

gh = v²(½ + ¼)

gh = ¾v²

Making v the subject gives;

v = √(4gh/3)

v = √((4 × 9.81 × 7.05)/3)

v = 9.603 m/s

6 0
2 years ago
if the velocity of a body changes from 13m/s to 30m/s while undergoing constant acceleration,what's the average velocity of the
Bess [88]

       Average speed = (1/2) (beginning speed + ending speed)

                               = (1/2)        ( 13 m/s  +  30 m/s )

                               =    (1/2)        ( 43 m/s )

                               =        21.5 m/s
5 0
3 years ago
What happens to the current as we increase the amount of stepping of our transformer? Does this help explain why the primary was
matrenka [14]

Answer:

Current will decrease.

Explanation:

When we increase the number of stepping in transformer, the voltage will increase as its is directly proportional to the number of turn of stepping. Thus as the voltage will increase, current will decrease. As per the equation of ideal transformer,   E1 / E2 = I2 / I1

E1 and E2 are the voltages in primary and secondary winding and I1 and I2 are the current.

As the number of turns will be increased more inevitable losses will be generated that dissipates heat thus warming the primary.

Though the conservation of energy is obeyed but losses occur in this scenario hence step-up transformers cannot be used to create free energy.

7 0
2 years ago
A wagon is pulled at a speed of 0.40metets/seconds by a horse exerting an 1,800 Newton's horizontal force. what is the power of
Tatiana [17]

Given:

speed of 0.40meters/seconds

1,800 Newton's horizontal force

Required:

Power of the horse

Solution:

P = F(D/T) where P is power in watts, F is the force, D is the distance and T is time

P = (1,800N) (0.40 meters/seconds)

P = 720 Watts

6 0
3 years ago
Two large rectangular aluminum plates of area 180 cm2 face each other with a separation of 3 mm between them. The plates are cha
Westkost [7]

Answer:

Φ = 361872 N.m^2 / C

Explanation:

Given:-

- The area of the two plates, A_p = 180 cm^2

- The charge on each plate, q = 17 * 10^-^6 C

- Permittivity of free space, e_o = 8.85 * 10^-^1^2 \frac{C^2}{N.m^2}

- The radius for the flux region, r = 3.3 cm

- The angle between normal to region and perpendicular to plates, θ = 4°

Find:-

Find the flux (in N · m2/C) through a circle of radius 3.3 cm between the plates.

Solution:-

- First we will determine the area of the region ( Ar ) by using the formula for the area of a circle as follows. The region has a radius of r = 3.3 cm:

                             A_r = \pi *r^2\\\\A_r = \pi *(0.033)^2\\\\A_r = 0.00342 m^2

- The charge density ( σ ) would be considered to be uniform for both plates. It is expressed as the ratio of the charge ( q ) on each plate and its area ( A_p ):

                           σ = \frac{q}{A_p} = \frac{17*10^-^6}{0.018} \\

                           σ = 0.00094 C / m^2

- We will assume the electric field due to the positive charged plate ( E+ ) / negative charged plate ( E- ) to be equivalent to the electric field ( E ) of an infinitely large charged plate with uniform charge density.

                         E+ = E- = \frac{sigma}{2*e_o} \\\\

- The electric field experienced by a region between two infinitely long charged plates with uniform charge density is the resultant effect of both plates. So from the principle of super-position we have the following net uniform electric field ( E_net ) between the two plates:

                        E_n_e_t = (E+)  + ( E-)\\\\E_n_e_t = \frac{0.00094}{8.85*10^-^1^2} \\\\E_n_e_t = 106214689.26553 \frac{N}{C}  \\

- From the Gauss-Law the flux ( Φ ) through a region under uniform electric field ( E_net ) at an angle of ( θ ) is:

                        Φ = E_net * Ar * cos ( θ )

                        Φ = (106214689.26553) * (0.00342) * cos ( 5 )

                        Φ = 361872 N.m^2 / C

5 0
2 years ago
Other questions:
  • How do I do these? My teacher didn’t show us how.
    11·1 answer
  • An AC source is connected to a series combination of a light bulb and a variable capacitor. If the capacitance is increased, the
    8·1 answer
  • A circular loop of radius 11.9 cm is placed in a uniform magnetic field. (a) If the field is directed perpendicular to the plane
    7·2 answers
  • a 700k/g race car slowed down from 30m/s to 15m/s what is the impulse and what was the average force applied by the brakes
    7·1 answer
  • Which of the following creates an adhesive force that prevents separation of the parietal and visceral pleurae during ventilatio
    12·1 answer
  • Anatomy and Phys PLEASE HELP
    12·2 answers
  • Define discrimination and write a sentence using the word.
    13·2 answers
  • Which of Newton’s laws explains why a satellite continually orbits the earth and does not fall into the ground?
    15·2 answers
  • Which is NOT a type of graph?<br> O circle<br> O line<br> O chart<br> O bar
    10·1 answer
  • A 21 KG chair initially at rest on a horizontal floor requires a 167 N horizontal force to set it in motion once the chair is in
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!