The correct answer is 24,000,000,000 km.
One AU(Astronomical Unit) is equal to 1.496 ×10⁸ kilometers.
∴ 160 AU = 160 × 1.496 ×10⁸ km
= 240 ×10⁸ Km = 24,000,000,000 km
Answer:
Get your recommenders to mention diverse achievements. ...
Help your recommenders with relevant info. ...
The letter should always include examples of things you did. ...
The letter should show how you improved over time. ...
The tone of the letter should not be too dry.
Answer:
maximum height = 31.63 m
Explanation:
Please notice that the units of velocity that you were giving are incorrect. They should be m/s. The ones given in the problem are in fact units of acceleration (not velocity). I am assuming that the initial velocity of the rock is 24.9 m/s to solve this problem.
Let's start by finding the time it takes the rock to reach that maximum height at which point, the velocity of the rock will be zero (just before changing its direction of movement and starting heading down.
We can use the fact that the initial velocity (
) of the rock is 24.9 m/s, the final velocity (
) at the maximum height is zero, and that the only acceleration it is getting is that of gravity (g) slowing down it motion:

Now we can use this time it takes the rock to reach the maximum height, in the kinematic expression for the distance covered:

The units of height will come directly in meters (m) after evaluating, since we use all the quantities in the SI system.
Answer:
La fuerza eléctrica es -8.2*10⁻⁸ N
Explanation:
El enunciado correcto es: <em>¿Cuál es la fuerza eléctrica sobre el electrón (-1.6 x 10⁻¹⁹c) de un átomo de hidrógeno ejercida por el protón (1.6 x 10⁻¹⁹c)? Supóngase que la distancia entre el electrón y el protón es de 5.3 x 10⁻¹¹ m</em>
Entre dos o más cargas aparece una fuerza denominada fuerza eléctrica. Su valor depende del valor de las cargas y de la distancia que las separa, mientras que su signo depende del signo de cada carga. Las cargas del mismo signo se repelen entre sí, mientras que las de distinto signo se atraen.
La fuerza eléctrica con la que se atraen o repelen dos cargas puntuales en reposo es directamente proporcional al producto de las mismas e inversamente proporcional al cuadrado de la distancia que las separa:

donde:
-
F es la fuerza eléctrica de atracción o repulsión. En el Sistema Internacional (S.I.) se mide en Newtons (N).
- q1 y q2 son lo valores de las dos cargas puntuales. En el S.I. se miden en Culombios (C).
- d es el valor de la distancia que las separa. En el S.I. se mide en metros (m).
- K es una constante de proporcionalidad llamada constante de la ley de Coulomb. Depende del medio en el que se encuentren las cargas. Para el vacío K tiene un valor aproximadamente de 9*10⁹
.
En este caso:
- K= 9*10⁹

Reemplazando:

Resolviendo:
F= -8.2*10⁻⁸ N
<u><em>La fuerza eléctrica es -8.2*10⁻⁸ N</em></u>
Answer:
Mechanical energy, U = 0.247 Joules
Explanation:
Given that,
Spring constant of the spring, k = 234 N/m
Mass, m = 524 g = 0.524 kg
Amplitude, A = 4.6 cm = 0.046 m
To find,
The mechanical energy of the system.
Solution,
We know that the sum of kinetic energy and the potential energy is equal to its mechanical energy. In mass-spring system, it is given by :


U = 0.247 Joules
So, the mechanical energy of the system is 0.247 Joules.