Answer:
Explanation:
Did you mean: V = d/t a = (V - Vit Average = (V+ + V)/2 with constant acceleration d = Vit + 2 at? Vi = (V2 + 2ad)1/2 =VV2 + 2ad A stick figure throws a ball straight up into the air at 5 m/s. g = -9.81 m/s2 1. How long does it take to reach the top? 2. How long does it take to come back to the level of release? 3. If the hand is 1 m from the ground, how long will it take to hit the ground if the ball is not caught? 4. How high is the ball at the top from the ground? 5. What is the displacement of the ball, if it is caught on return? 6. What is the displacement of the ball to the top from release? 7. What is final velocity when you catch the ball on return to your hand? 8. What is the final velocity as it hits the ground? 9. What is the velocity at the top?
Showing results for V = d/t a = (V - Vil/t Vaverage = (V+ + V)/2 with constant acceleration d = Vit + 2 at? Vi = (V2 + 2ad)1/2 =VV2 + 2ad A stick figure throws a ball straight up into the air at 5 m/s. g = "-9.81" m/s2 1. How long does it take to reach the top? 2. How long does it take to come back to the level of release? 3. If the hand is 1 m from the ground, how long will it take to hit the ground if the ball is not caught? 4. How high is the ball at the top from the ground? 5. What is the displacement of the ball, if it is caught on return? 6. What is the displacement of the ball to the top from release? 7. What is final velocity when you catch the ball on return to your hand? 8. What is the final velocity as it hits the ground? 9. What is the velocity at the top?
Search instead for V = d/t a = (V - Vil/t Vaverage = (V+ + V)/2 with constant acceleration d = Vit + 2 at? Vi = (V2 + 2ad)1/2 =VV2 + 2ad A stick figure throws a ball straight up into the air at 5 m/s. g = -9.81 m/s2 1. How long does it take to reach the top? 2. How long does it take to come back to the level of release? 3. If the hand is 1 m from the ground, how long will it take to hit the ground if the ball is not caught? 4. How high is the ball at the top from the ground? 5. What is the displacement of the ball, if it is caught on return? 6. What is the displacement of the ball to the top from release? 7. What is final velocity when you catch the ball on return to your hand? 8. What is the final velocity as it hits the ground? 9. What is the velocity at the top?
Answer:

Explanation:
Hello!
In this case, since the molarity of a solution is calculated by diving the moles of solute by the volume of solution in liters, we first compute the moles of barium hydroxide in 35.5 g as shown below:

Then, the liters of solution:

Finally, the molarity turns out:

Best regards!
Answer: Sorry I try to download it but it not showing anything, if you take a picture of the work maybe I would do it....
Explanation:
Answer:
<h2>4. Na+ diffusing toward the side of the membrane with Cl− and 50% less Na+.</h2>
Explanation:
Facilitated diffusion is a type of transport mechanism in which the special proteins are involved and play an important role in the transport of the atoms, ions or molecules. This mechanism is based on the electrochemical gradient differences. When this difference increase, then the transport of the sodium takes place because sodium ions are chemically attracted by chloride ions. In a facilitated diffusion process, no energy requirement takes place. This process occurs along the concentration gradient.
The first blank can be filled with the Heliocentric model, and the second blank can be filled with Copernicus.
The heliocentric model known as heliocentrism was proposed by the Renaissance astronomer, mathematician, and the Catholic cleric Nicolaus Copernicus resulting in the Copernican revolution.
It is the astronomical model, in which the planets and the Earth revolve around the Sun positioned at the middle of the Solar system. Factually, the heliocentric model was in contrast to geocentrism, in which Earth is positioned at the center of the Solar system.