Answer:
The correct order of the elements, taking into account their ionic radius from highest to lowest, is:
<em>a) Cl⁻¹ > F⁻¹ > Na⁺¹ > Mg⁺²</em>
<em>b) S⁻² > O⁻² > Li⁺¹ > Be⁺²</em>
<em>c) S⁻² > Cl⁻¹ > K⁺¹ > Na⁺¹</em>
Explanation:
In ions the ionic radius is determined by the amount of electrons an element gains or loses to become an ion. The more negative an ion is, the greater its ionic radius.
As a rule, anions (negative charge) have a larger ionic radius than cations (positive charge), because the loss of electrons means a contraction of the ionic radius, while the gain of electrons means a greater radius.
To determine which ionic radius is greater in anions or cations with the same charge, it must be considered that in the periodic table the ionic radius increases from top to bottom and from right to left.
Learn more:
Ionic radius example brainly.com/question/2279609
Answer:
a) Chloride dioxide
b) Di nitrogen tetra oxide
c) Potassium phosphide
d) Silver -Ag
e) Aluminium nitride - AlN
f) Silicon dioxide
I) Sulfide
The radius of a chlorine ion is larger than the radius of a chlorine atom because the effective nuclear charge decreases, therefore the inward force decreases, increasing the ionic radius.
Answer:
CaCO3 is the limiting reactant
55 g of CO2 is made
Explanation:
First we must put down the reaction equation;
CaCO3(s) + 2HCl(aq) ---------> CaCl2(s) + H2O(l) + CO2(g)
Number of mole of CaCO3 = 125g/100gmol-1 = 1.25 moles
From the reaction equation;
1 mole of CaCO3 yields 1 mole of CO2
Hence 1.25 moles of CaCO3 yields 1.25 moles of CO2
For HCl;
number of moles of HCl = 125g/36.5 g mol-1 = 3.42 moles
From the reaction equation;
2 moles of HCl yields 1 mole of CO2
3.42 moles of HCl yields 3.42 * 1/2 = 1.71 moles of CO2
Hence CaCO3 is the limiting reactant.
Mass of CO2 produced = 1.25g * 44 gmol-1 = 55 g of CO2
Answer:
true
Explanation:
Because ice melts if the temperature increasese