Answer:
120 kg•m/s.
Explanation:
From the question given above, the following data were obtained:
Case 1
Mass of object = M
Velocity of object = V
Momentum = 15 kg•m/s
Case 2
Mass of object = 2M
Velocity of object = 4V
Momentum = ?
Momentum is defined as follow:
Momentum = mass × velocity
The momentum of object in case 2 can be obtained as follow:
From case 1
Momentum = mass × velocity
15 = M × V
15 = MV ....... (1)
From case 2:
Momentum = mass × velocity
Momentum = 2M × 4V
Momentum = 8MV ....... (2)
Finally , substitute the value of MV in equation 1 into equation 2.
Momentum = 8MV
MV = 15
Momentum = 8 × 15
Momentum = 120 kg•m/s
Therefore, an object with a mass of 2M and 4V would have a momentum of 120 kg•m/s
Explanation:
It is given that there is distance time graph. The slope of any distance time graph will give the speed or velocity of the object.
In the context, it is seen that there is a point in the distance - time graph. And the values of the point in the graph is (4,15).
Now here, the distance is plotted in the ordinate or the vertical y-axis while time is plotted in the abscissa or the horizontal x-axis.
Thus the point (4,15) tells us that the object has traveled 15 units in time equal to 4 seconds.
East component: 3.9 m/s
South component: 1.8 m/s
Explanation:
We have to resolve the velocity vector along the east and south axis.
Taking east as positive x-direction and south as positive y-direction, the components of the velocity are given by:

where
v = 4.3 m/s is the magnitude of the velocity
is the angle between the direction of the velocity and of the x-axis
Substituting into the equations, we find:
East component:

South component:

Learn more about vector components:
brainly.com/question/2678571
#LearnwithBrainly