Answer:
Explanation:
1. Calculate the volume of the unit cell
V = l³ = (2.866 × 10⁻⁸ cm)³ = 2.354 × 10⁻²³ cm³
2. Calculate the mass of a unit cell

3. Calculate the mass of one atom
A body-centred unit cell contains two atoms.

Answer:
Kc = 12.58
Explanation:
Kc = [0.229]^2*[0.687]^6/[0.221]^4*[0.5685]^3
Kc = (0.052441)(0.10513)/(0.002385)(0.18373)
Kc = 0.0005513/0.000438
Kc = 12.58
Hope that helps!!
Zero order are reactions in which concentration of reactant has NO effect on RATE OF REACTION.
2. First order are reactions in which concentration of one reactant is proportionate to the RATE OF REACTION.
Exp: That means when you increase the concentration of the one reactant, then the rate of reaction will increase by the same degree of extent.
3. Second order are reactions in which concentration of two reactant has an effect on the RATE OF REACTION.
Formula:
1. Zero order Rate = k
2. First order Rate = k(A)^m
3. Second order Rate = k(A)^m(B)^n
where () represents concentration
and equation is mA + nB -> Product.
Answer:
The answer to your question is 242 ml
Explanation:
Data
HI 0.211 M Volume = x
KMnO₄ 0.354 M Volume = 24 ml
Balanced Chemical reaction
12HI + 2KMnO₄ + 2H₂SO₄ → 6I₂ + Mn₂SO₄ + K₂SO₄ + 8H₂O
Process
1.- Calculate the moles of KMnO₄ 0.354 M in 24 ml
Molarity = moles / volume (L)
moles = Molarity x volume (L)
moles = 0.354 x 0.024
moles = 0.0085
2.- From the balanced chemical reaction we know that HI and KMnO₄ react in the proportion 12 to 2. Then,
12 moles of HI --------------- 2 moles of KMnO₄
x --------------- 0.0085 moles of KMnO₄
x = (0.0085 x 12)/2
x = 0.051 moles of HI
3.- Calculate the milliliters of HI 0.211 M
Molarity = moles/volume
Volume = moles/molarity
Volume = 0.051/0.211
Volume = 0.242 L or Volume = 242 ml