<span>substances consisting of ions held together by electrostatic attraction
</span>
<u>The frequency of </u><u>collisions </u><u>between the two reactants increases as the </u><u>concentration </u><u>of the reactants increases</u>. When collisions happen, they don't always cause a reaction (atoms misaligned or insufficient energy, etc.). Higher concentrations result in more collisions and reaction opportunities.
Increasing a reactant's surface area increases the frequency of collisions and thus the reaction rate. The surface area of several smaller particles is greater than that of a single large particle. The greater the available surface area for particles to collide, the faster the reaction will occur.
<h3>How does concentration affect the rate of collisions between reactants?</h3>
Thus, we can conclude that by increasing the concentration of Mg in the reaction mixture we increase the rate of collisions between the reactants in this reaction.
<h3>What does the half reaction of an oxidation-reduction reaction show?</h3>
Iron gains electrons in the half reaction of an oxidation-reduction reaction. What does iron's electron gain mean? It has been reduced. Predict the product that will precipitate out of the reaction using the solubility rules and the periodic table.
Learn more about collisions of particles:
brainly.com/question/14897392
#SPJ4
Answer:
1.008moles of iodine
Explanation:
Hello,
This question requires us to calculate the theoretical yield of I₂ or number of moles that reacted.
Percent yield = (actual yield / estimated yield) × 100
Actual yield = 1.2moles
Estimated yield = ?
Percentage yield = 84%
84 / 100 = 1.2 / x
Cross multiply and solve for x
100x = 84 × 1.2
100x = 100.8
x = 100.8/100
x = 1.008moles
1.008 moles of I₂ reacted in excess of H₂ to give 1.2 moles of HI