Answer:
The turns of a graph is represented by the number of maximum or minimum that the function has.
If we differenciate f(x) we get:
f'(x)=4x^3+6x
f'(x)=2x(2x^2 + 3)
Therefore f'(x) =0, when x=0. Given that negative roots are not defined.
Therefore, the number of turns will be given by the number of solutions of f'(x) which is 1.
Attached you find the graph of the function which confirms the number of turns.
If the function had other solutions, the maximum number of turns it could have is 3! because f'(x) is a third degree polynomial, therefore it can't have more than 3 solutions!
Answer: its b
Step-by-step explanation:
Cards are drawn, one at a time, from a standard deck; each card is replaced before the next one is drawn. Let X be the number of draws necessary to get an ace. Find E(X) is given in the following way
Step-by-step explanation:
- From a standard deck of cards, one card is drawn. What is the probability that the card is black and a
jack? P(Black and Jack) P(Black) = 26/52 or ½ , P(Jack) is 4/52 or 1/13 so P(Black and Jack) = ½ * 1/13 = 1/26
- A standard deck of cards is shuffled and one card is drawn. Find the probability that the card is a queen
or an ace.
P(Q or A) = P(Q) = 4/52 or 1/13 + P(A) = 4/52 or 1/13 = 1/13 + 1/13 = 2/13
- WITHOUT REPLACEMENT: If you draw two cards from the deck without replacement, what is the probability that they will both be aces?
P(AA) = (4/52)(3/51) = 1/221.
- WITHOUT REPLACEMENT: What is the probability that the second card will be an ace if the first card is a king?
P(A|K) = 4/51 since there are four aces in the deck but only 51 cards left after the king has been removed.
- WITH REPLACEMENT: Find the probability of drawing three queens in a row, with replacement. We pick a card, write down what it is, then put it back in the deck and draw again. To find the P(QQQ), we find the
probability of drawing the first queen which is 4/52.
- The probability of drawing the second queen is also 4/52 and the third is 4/52.
- We multiply these three individual probabilities together to get P(QQQ) =
- P(Q)P(Q)P(Q) = (4/52)(4/52)(4/52) = .00004 which is very small but not impossible.
- Probability of getting a royal flush = P(10 and Jack and Queen and King and Ace of the same suit)
Answer:
-1/2
Step-by-step explanation:
Answer:
e
Step-by-step explanation:
you can use this phrase to help u
5 or above give it a shove
4 or below let it go
meaning that if its 5 or more then you round up but if its less then 5 then u round down