I think the answer would be c
Answer:
The speed of the block is 8.2 m/s
Explanation:
Given;
mass of block, m = 2.1 kg
height above the top of the spring, h = 5.5 m
First, we determine the spring constant based on the principle of conservation of potential energy
¹/₂Kx² = mg(h +x)
¹/₂K(0.25)² = 2.1 x 9.8(5.5 +0.25)
0.03125K = 118.335
K = 118.335 / 0.03125
K = 3786.72 N/m
Total energy stored in the block at rest is only potential energy given as:
E = U = mgh
U = 2.1 x 9.8 x 5.5 = 113.19 J
Work done in compressing the spring to 15.0 cm:
W = ¹/₂Kx² = ¹/₂ (3786.72)(0.15)² = 42.6 J
This is equal to elastic potential energy stored in the spring,
Then, kinetic energy of the spring is given as:
K.E = E - W
K.E = 113.19 J - 42.6 J
K.E = 70.59 J
To determine the speed of the block due to this energy:
KE = ¹/₂mv²
70.59 = ¹/₂ x 2.1 x v²
70.59 = 1.05v²
v² = 70.59 / 1.05
v² = 67.229
v = √67.229
v = 8.2 m/s
Now I can actually edit my answer directly: I'm fairly sure I've got this wrong, and my mind has gone blank for how to do it, if someone could delete this that would be great and I'll think about it and see if I can figure it out!