Answer:
for the first interference m = 1 y = 2,839 10-3 m
for the second interference m = 2 y = 5,678 10-3 m
Explanation:
The double slit interference phenomenon, for constructive interference is described by the expression
d sin θ = m λ
where d is the separation between the slits, λ the wavelength and m an integer that corresponds to the interference we see.
In these experiments in general the observation screen is L >> d, let's use trigonometry to find the angles
tan θ = y / L
with the angle it is small,
tan θ = sin θ / cos θ = sin θ
we substitute
sin θ = y / L
d y / L = m λ
the distance between the central maximum and an interference line is
y = m λ L / d
let's reduce the magnitudes to the SI system
λ = 546 nm = 546 10⁻⁹ m
d = 0.25 mm = 0.25 10⁻³ m
let's substitute the values
y = m 546 10⁻⁹ 1.3 / 0.25 10⁻³
y = m 2,839 10⁻³
the explicit value for a line depends on the value of the integer m, for example
for the first interference m = 1
the distance from the central maximum to the first line is y = 2,839 10-3 m
for the second interference m = 2
the distance from the central maximum to the second line is y = 5,678 10-3 m