Answer:

Explanation:
Given:
- mass of water,

- initial temperature of water,

- initial temperature of pan,

- mass of pan,

- mass of water evapourated,

- specific heat of water,

- specific heat of aluminium pan,

- latent heat of vapourization,

<u>Using the equation of heat:</u>
<em>Here, initially certain mass of water is vapourised first and then the remaining mass of water comes in thermal equilibrium with the pan.</em>



Isotopes refer to different atoms of the same element (i.e. same number of protons) that differ in the number of neutrons they have (giving them different atomic weights). Atomic weight is the sum of protons and neutrons (each contributes 1 atomic mass unit).
Carbon has 6 protons by definition. If you have a carbon-13 atom (the 13 referring to its mass), the atom has 13 - 6 = 7 neutrons. Since it's neutral, protons = electrons, so there are also 6 electrons.
Sulfur has 16 protons by definition. If you have a sulfur-32 atom, the atom has 32 - 16 = 16 neutrons. Since it's neutral, protons = electrons, so there are also 16 electrons.
The solution you should use is Hooke's law: F=-kx
It should have the same signs because they repel due to the stretch of the spring.
a. Since there is a constant energy within the spring, then Hooke's law will determine the possible algebraic signs. The solution should be
<span>F = kx
270 N/m x 0.38 m = 102.6 N
</span>
b. Then use Coulomb's law; F=kq1q2/r^2 to find the charges produced in the force.