Answer:
3.066×10^21 photons/(s.m^2)
Explanation:
The power per area is:
Power/A = (# of photons /t /A)×(energy / photon)
E/photons = h×c/(λ)
photons /t /A = (Power/A)×λ /(h×c)
photons /t /A = (P/A)×λ/(hc)
photons /t /A = (680)×(678×10^-9)/(6.63×10^-34)×(3×10^-8)
= 3.066×10^21
Therefore, the number of photons per second per square meter 3.066×10^21 photons/(s.m^2).
The movement of air flows from high pressure to low pressure
A wave is a result of the disturbance in the equilibrium state. There are two types of wave, transverse and longitudinal. Transverse wave affects amplitude while longitudinal wave affects the frequency of the wave. As for the transverse wave, the magnitude of the perpendicular disturbance of the wave is directly proportional to the amplitude of the wave. The higher the transverse disturbance the higher the amplitude.
Answer:
about 602 milliseconds
Explanation:
The motion can be approximated by the equation ...
y = -4.9t^2 -22.8t +15.5
where t is the time since the arrow was released, and y is the distance above the ground.
When y=0, the arrow has hit the ground.
Using the quadratic formula, we find ...
t = (-(-22.8) ± √((-22.8)^2 -4(-4.9)(15.5)))/(2(-4.9))
= (22.8 ± √823.64)/(-9.8)
The positive solution is ...
t ≈ 0.60195193
It takes about 602 milliseconds for the arrow to reach the ground.
The answer is most likely D. hope that helped