Answer:
The gauge pressure in Pascals inside a honey droplet is 416 Pa
Explanation:
Given;
diameter of the honey droplet, D = 0.1 cm
radius of the honey droplet, R = 0.05 cm = 0.0005 m
surface tension of honey, γ = 0.052 N/m
Apply Laplace's law for a spherical membrane with two surfaces
Gauge pressure = P₁ - P₀ = 2 (2γ / r)
Where;
P₀ is the atmospheric pressure
Gauge pressure = 4γ / r
Gauge pressure = 4 (0.052) / (0.0005)
Gauge pressure = 416 Pa
Therefore, the gauge pressure in Pascals inside a honey droplet is 416 Pa
Answer:
ans 5
Explanation:
hope it's help It seems to me
Answer with Explanation:
We are given that
Weight of an ore sample=17.5 N
Tension in the cord=11.2 N
We have to find the total volume and the density of the sample.
We know that
Tension, T=
=buoyancy force
T=Tension force
W=Weight
By using the formula

N

Where
=Volume of object
=Density of water
=Acceleration due to gravity
Substitute the values then we get


Volume of sample=
Density of sample,
Where mass of ore sample=1.79 kg
Substitute the values then, we get

Density of the sample=
You want to draw a free body diagram of the forces on the sled in the horizontal x-direction.
If you visualize the system in an x-y coordinate plane, the force along the x-direction is the angle it makes with the x-axis multiples by the force.
The angle made with the x-axis is cosine of the angle theta.
Please see picture attached.