1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kap26 [50]
4 years ago
8

Two reversible cycles operate between hot and cold reservoirs at temperature TH and TC, respectively. If one is a power cycle an

d the other is a heat pump cycle, what is the relation between the coefficient of performance of the heat pump cycle and the thermal efficiency of the power cycle?
Engineering
1 answer:
Reika [66]4 years ago
5 0

Answer:

COP_{HP} = \frac{1}{\eta_{th}}

Explanation:

The coefficient of performance of the reversible heat pump is:

COP_{HP} = \frac{T_{H}}{T_{H}-T_{C}}

COP_{HP} = \frac{1}{1-\frac{T_{C}}{T_{H}} }

The thermal efficiency of the reversible power cycle is:

\eta_{th} = 1 - \frac{T_{C}}{T_{H}}

After a quick comparison between both expressions, the following relation is found:

COP_{HP} = \frac{1}{\eta_{th}}

You might be interested in
What should you use to keep battery terminals from corroding
Ray Of Light [21]

Answer: Apply battery-terminal grease to the terminals to help prevent corrosion. It's available at any auto parts store and usually comes in a little ketchup-like packet. Another great option is AMSOIL Heavy-Duty Metal Protector. It creates a protective coating on terminals that wards off corrosion.

Explanation:

3 0
3 years ago
Which of the following is true regarding screw gauges and shank?
agasfer [191]
correct me if i’m wrong i’m pretty sure it’s B i’ve had the same question
6 0
3 years ago
The part of a circuit that carries the flow of electrons is referred to as the?
Oksanka [162]

Answer:

  Conductor

Explanation:

Current is carried by a conductor.

__

The purpose of a dielectric and/or insulator is to prevent current flow. An electrostatic field may set up the conditions for current flow, but it carries no current itself.

7 0
4 years ago
If the feedforward path of a control system contains at least one integrating element, then the output continues to change as lo
Thepotemich [5.8K]

Answer:

The attached system shows that there’s an integrator between the point where disturbance enters the system and error measuring element. A any time when R(s)=0 then

\frac {C(s)}{D(s)}=\frac {G(s)}{1+G_c(s)G(s)} and considering that E(s)=D(s)-G_c(s)C(s) then

\frac {E(s)}{D(s)}=1-(\frac {C(s)}{D(s)})G_c(s)

\frac {E(s)}{D(s)}=1-(\frac {G(s)}{1+G_c(s)D(s)})G_c(s)

\frac {E(s)}{D(s)}=\frac {1}{1+G_c(s)G(s)}

E(s)=\frac {D(s)}{1+G_c(s)G(s)}

For ramp disturbance d(t)=at

D(s)=\frac {a}{s^{2}} therefore, the steady state error is given by

e(\infty)= \lim_{s \to 0} s E(s)

e(\infty)= \lim_{s \to 0} s [\frac {D(s)}{1+G_c(s)G(s)}]

e(\infty)= \lim_{s \to 0} s [\frac {a}{s^{2}+s^{2}G_c(s)G(s)}]

e(\infty)= \lim_{s \to 0} s [\frac {a}{s+sG_c(s)G(s)}]

e(\infty)= \lim_{s \to 0} s [\frac {a}{sG_c(s)G(s)}]

Whenever G_c(s) has a double intergrator, the error e(\infty) becomes zero

3 0
3 years ago
An alloy is evaluated for potential creep deformation in a short-term laboratory experiment. The creep rate (ϵ˙) is found to be
cupoosta [38]

Answer:

Activation energy for creep in this temperature range is Q = 252.2 kJ/mol

Explanation:

To calculate the creep rate at a particular temperature

creep rate, \zeta_{\theta} = C \exp(\frac{-Q}{R \theta} )

Creep rate at 800⁰C, \zeta_{800} = C \exp(\frac{-Q}{R (800+273)} )

\zeta_{800} = C \exp(\frac{-Q}{1073R} )\\\zeta_{800} = 1 \% per hour =0.01\\

0.01 = C \exp(\frac{-Q}{1073R} ).........................(1)

Creep rate at 700⁰C

\zeta_{700} = C \exp(\frac{-Q}{R (700+273)} )

\zeta_{800} = C \exp(\frac{-Q}{973R} )\\\zeta_{800} = 5.5 * 10^{-2}  \% per hour =5.5 * 10^{-4}

5.5 * 10^{-4}  = C \exp(\frac{-Q}{1073R} ).................(2)

Divide equation (1) by equation (2)

\frac{0.01}{5.5 * 10^{-4} } = \exp[\frac{-Q}{1073R} -\frac{-Q}{973R} ]\\18.182= \exp[\frac{-Q}{1073R} +\frac{Q}{973R} ]\\R = 8.314\\18.182= \exp[\frac{-Q}{1073*8.314} +\frac{Q}{973*8.314} ]\\18.182= \exp[0.0000115 Q]\\

Take the natural log of both sides

ln 18.182= 0.0000115Q\\2.9004 = 0.0000115Q\\Q = 2.9004/0.0000115\\Q = 252211.49 J/mol\\Q = 252.2 kJ/mol

3 0
3 years ago
Other questions:
  • A steel ship deck plate is 30 mm thick and 12 m wide. It is loaded with a nominal uni- axial tensile stress of 70 MPa. It is ope
    13·1 answer
  • A cylindrical metal specimen having an original diameter of 10.55 mm and gauge length of 54.5 mm is pulled in tension until frac
    15·1 answer
  • A cube with 1 m on a side is located in the positive x-y-z octant in a Cartesian coordinate system, with one of its points locat
    8·1 answer
  • How to build a laser pointer?
    12·1 answer
  • In a year, roughly (to 20% accuracy) how much energy does the U.S. obtain from wind? (a) 25 quads (b) 250 quads (c) 2.5 quads (d
    6·1 answer
  • Why does the the diffusion capacitance fall off at high frequencies?
    10·1 answer
  • we wish to send at a rate of 10Mbits/s over a passband channel. Assuming that an excess bandwidth of 50% is used, how much bandw
    15·1 answer
  • An assembly line in a modern business compared to one from Henry Ford's time is more likely to rely on which of the following?
    11·1 answer
  • What careers could you potential do if you
    5·1 answer
  • If a bearing needs 4. 0 s to solidify enough for impact, how high must the tower be?.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!