1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Diano4ka-milaya [45]
3 years ago
15

Problem: design the following rectangular floor beam for a building.

Engineering
2 answers:
sammy [17]3 years ago
8 0

Answer:

Area required = 9.5 ft²

Explanation:

Step by step explanation is given in the attached document.

Aleksandr-060686 [28]3 years ago
4 0

Attached in the solution to the above question

You might be interested in
Do heavier cars really use more gasoline? Suppose a car is chosen at random. Let x be the weight of the car (in hundreds of poun
Alex17521 [72]

Answer:

Answer is explained in the explanation section below.

Explanation:

Solution:

Note: This question is incomplete and lacks necessary data to solve. But I have found the similar question on the internet. So, I will be using the data from that question to solve this question for the sack of concept and understanding.

Data Given:

x = 27 , 44 , 32 , 47, 23 , 40, 34, 52

y = 30, 19,  24,  13 , 29,  19,  21,  14

It is given that,

∑x = 299

∑y = 167

∑x^{2} = 11887

∑y^{2} = 3773

We are asked to verify the above values manually in this question.

So,

1. ∑x = 299

Let's verify it:

∑x = 27 + 44 + 32 + 47 + 23 + 40 + 34 + 52

∑x = 299

Yes, it is equal to the given value. Hence, verified.

2. ∑y = 167

Let's verify it:

∑y = 30 + 19 +  24 + 13 + 29 + 19 +  21 +  14

∑y = 169

No, it is not equal to the given value.

3. ∑x^{2} = 11887

Let's verify it:

For this to find,  first we need to square all the value of x individually and then add them together to verify.

∑x^{2} = 27^{2} + 44^{2} + 32^{2} + 47^{2} + 23^{2} + 40^{2} + 34^{2} + 52^{2}

∑x^{2} = 11,887

Yes, it is equal to the given value. Hence, verified.

4. ∑y^{2} = 3773

Let's verify it:

Again, for this we need to find the squares of all the y values and then add them together to verify it.

∑y^{2} = 30^{2} + 19^{2} +  24^{2} + 13^{2} + 29^{2} + 19^{2} +  21^{2} +  14^{2}

∑y^{2}  = 3,845

No, it is not equal to the given value.

4 0
3 years ago
Would be much appreciated if someone could help with this will give brainiest.
Mashcka [7]

Answer:   both mm and inches on each dimension in a sketch (with the main dimension in one format and the other in brackets below it), in the way you can have dual dimensions shown when detailing an idw view.

personally think it would look a mess/cluttered with even more text all over the sketch environment, but everyone's differenent.

If it's any help - you know you can enter dimensions in either format?  If you're working in mm you can still dimension a line and type "2in" and vice-versa.  Probably know this already, but no harm saying it, just in case.

You can enter the units directly in or mm and Inventor will convert to current document settings (which  you can change - maybe someone can come up with a simple toggle icon to toggle the document settings).  Tools>Document Settings>Units

Unlike SolidWorks when you edit the dimension the original entry shows in the dialog box so it makes it easy to keep track of different units even if they aren't always displayed.  (SWx does the conversion or equation and then that is what you get.)

I work quite a bit in inch and metric and combination (ex metric frame motor on inch machine) and it doesn't seem to be a real difficulty to me.

4 0
3 years ago
The Torricelli's theorem states that the (velocity—pressure-density) of liquid flowing out of an orifice is proportional to the
Sergeeva-Olga [200]

Answer:

The correct answer is 'velocity'of liquid flowing out of an orifice is proportional to the square root of the 'height'  of liquid above the center of the orifice.

Explanation:

Torricelli's theorem states that

v_{exit}=\sqrt{2gh}

where

v_{exit} is the velocity with which the fluid leaves orifice

h is the head under which the flow occurs.

Thus we can compare the given options to arrive at the correct answer

Velocity is proportional to square root of head under which the flow occurs.

4 0
3 years ago
Say that a variable A in CFG G is necessary if it appears in every derivation of some string w ∈ G. Let NECESSARY CFG = {hG, Ai|
ale4655 [162]

Answer:

Explanation:

solution

8 0
3 years ago
Read 2 more answers
Air at 26 kPa, 230 K, and 220 rn/s enters a turbojet engine in flight. The air mass flow rate is 25 kg/s. The compressor pressur
Paha777 [63]

Answer:

Explanation:

Answer:

Explanation:

Answer:  

Explanation:  

This is a little lengthy and tricky, but nevertheless i would give a step by step analysis to make this as simple as possible.  

(a). here we are asked to determine the Temperature and Pressure.  

Given that the properties of Air;  

ha = 230.02 KJ/Kg  

Ta = 230 K  

Pra = 0.5477  

From the energy balance equation for a diffuser;  

ha + Va²/2 = h₁ + V₁²/2  

h₁ = ha + Va²/2 (where V₁²/2 = 0)  

h₁ = 230.02 + 220²/2 ˣ 1/10³  

h₁ = 254.22 KJ/Kg  

⇒ now we obtain the properties of air at h₁ = 254.22 KJ/Kg  

from this we have;  

Pr₁ = 0.7329 + (0.8405 - 0.7329)[(254.22 - 250.05) / (260.09 - 250.05)]  

Pr₁ = 0.77759  

therefore T₁ = 254.15K  

P₁ = (Pr₁/Pra)Pa  

= 0.77759/0.5477 ˣ 26  

P₁ = 36.91 kPa  

now we calculate Pr₂  

Pr₂ = Pr₁ (P₂/P₁) = 0.77759 ˣ 11 = 8.55349  

⇒ now we obtain properties of air at  

Pr₂ = 8.55349 and h₂ = 505.387 KJ/Kg  

calculating the enthalpy of air at state 2  

ηc = h₁ - h₂ / h₁ - h₂  

0.85 = 254.22 - 505.387 / 254.22 - h₂  

h₂ = 549.71 KJ/Kg  

to obtain the properties of air at h₂ = 549.71 KJ/Kg  

T₂ = 545.15 K

⇒ to calculate the pressure of air at state 2

P₂/P₁ = 11

P₂ = 11 ˣ 36.913  

p₂ = 406.043 kPa

but pressure of air at state 3 is the same,

i.e. P₂ = P₃ = 406.043 kPa

P₃ = 406.043 kPa

To obtain the properties of air at  

T₃ = 1400 K, h₃ = 1515.42 kJ/Kg and Pr = 450.5

for cases of turbojet engine,

we have that work output from turbine = work input to the compressor

Wt = Wr

(h₃ - h₄) = (h₂ - h₁)

h₄ = h₃ - h₂ + h₁  

= 1515.42 - 549.71 + 254.22

h₄ = 1219.93 kJ/Kg

properties of air at h₄ = 1219.93 kJ/Kg

T₄ = 1140 + (1160 - 1140) [(1219.93 - 1207.57) / (1230.92 - 1207.57)]

T₄ = 1150.58 K

Pr₄ = 193.1 + (207.2 - 193.1) [(1219.93 - 1207.57) / (1230.92 - 1207.57)]

Pr₄ = 200.5636

Calculating the ideal enthalpy of the air at state 4;

Лr = h₃ - h₄ / h₃ - h₄*

0.9 = 1515.42 - 1219.93 / 1515.42 - h₄  

h₄* = 1187.09 kJ/Kg

now to obtain the properties of air at h₄⁻ = 1187.09 kJ/Kg

P₄* = 179.7 + (193.1 - 179.7) [(1187.09 -1184.28) / (1207.57 - 1184.28)]

P₄* = 181.316

P₄ = (Pr₄/Pr₃)P₃       i.e. 3-4 isentropic process

P₄ = 181.316/450.5 * 406.043

P₄ = 163.42 kPa

For the 4-5 process;

Pr₅ = (P₅/P₄)Pr₄

Pr₅ = 26/163.42 * 200.56 = 31.9095

to obtain the properties of air at Pr₅ = 31.9095

h₅= 724.04 + (734.82 - 724.04) [(31.9095 - 3038) / (32.02 - 30.38)]

h₅ = 734.09 KJ/Kg

T₅ = 710 + (720 - 710) [(31.9095 - 3038) / (32.02 - 30.38)]

T₅ = 719.32 K

(b) Now we are asked to calculate the rate of heat addition to the air passing through the combustor;

QH = m(h₃-h₂)

QH = 25(1515.42 - 549.71)

QH = 24142.75 kW

(c). To calculate the velocity at the nozzle exit;

we apply steady energy equation of a flow to nozzle

h₄ + V₄²/2 = h₅ + V₅²/2

h₄  + 0  = h₅₅ + V₅²/2

1219.9 ˣ 10³ = 734.09 ˣ 10³ + V₅²/2

therefore, V₅ = 985.74 m/s

cheers i hope this helps

6 0
3 years ago
Other questions:
  • Consider flow in between two parallel plates located a distance H from each other. Fluid flow is driven by the bottom plate movi
    15·1 answer
  • 3. When starting an automatic transmission
    6·1 answer
  • As Becky was driving "Old Betsy," the family station wagon, the engine finally quit, being worn out after 171,000 miles. It can
    12·1 answer
  • A rotating cup viscometer has an inner cylinder diameter of 2.00 in., and the gap between cups is 0.2 in. The inner cylinder len
    9·1 answer
  • Exercise 5.46 computes the standard deviation of numbers. This exercise uses a different but equivalent formula to compute the s
    12·1 answer
  • Under the normal sign convention, the distributed load on a beam is equal to the:_______A. The rate of change of the bending mom
    13·1 answer
  • How can goal setting help with academic performance?
    13·1 answer
  • (25) Consider the mechanical system below. Obtain the steady-state outputs x_1 (t) and x_2 (t) when the input p(t) is the sinuso
    9·1 answer
  • Describing Tasks for Stationary Engineers Click this link to view O*NET’s Tasks section for Stationary Engineers. Note that comm
    12·2 answers
  • ) Assuming different AM regulations; the receiver is using mixer with subtracting format. The frequency selectivity ratio is app
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!