Answer:
± 0.003 ft
Explanation:
Since our distance is 10,000 ft and we need to use a full tape measure of 100 ft. We find that 10,000 = 100 × 100.
Let L' = our distance and L = our tape measure
So, L' = 100L
Now by error determination ΔL' = 100ΔL
Now ΔL' = ± 0.30 ft
ΔL = ΔL'/100
= ± 0.30 ft/100
= ± 0.003 ft
So, the maxim error per tape is ± 0.003 ft
Explanation:
the 7th one answer is beacause mercury is bad at sharing electrons
the 8th one's answer is Rhodium
Answer:
a) 4-input XOR, input data-1001 = 0 Even parity Bit
b) 5-input XOR, input data-10010 = 0 Even parity Bit
c) 6-input XOR, input data-101001 = 1 Even parity Bit
d) 7-input XOR, input data 1011011 = 1 Even parity Bit
Explanation:
a) 4-input XOR, input data-1001 ; generates 0 Even parity Bit
b) 5-input XOR, input data-10010 ; generates 0 Even parity Bit
c) 6-input XOR, input data-101001 ; generates 1 Even parity Bit
d) 7-input XOR, input data 1011011 ; generates 1 Even parity Bit
Attached below is the Logic circuits of the data inputs
Answer:
184.6 BTU
Explanation:
The thermal efficiency for a Carnot cycle follows this equation:
η = 1 - T2/T1
Where
η: thermal efficiency
T1: temperature of the heat source
T2: temperature of the heat sink
These temperatures must be in absolute scale:
1000 F = 1460 R
50 F = 510 R
Then
η = 1 - 510/1460 = 0.65
We also know that for any heat engine:
η = L / Q1
Where
L: useful work
Q1: heat taken from the source
Rearranging:
Q1 = L / η
Q1 = 120 / 0.65 = 184.6 BTU
Answer:
b)1.08 N
Explanation:
Given that
velocity of air V= 45 m/s
Diameter of pipe = 2 cm
Force exerted by fluid F

So force exerted in x-direction


F=0.763 N
So force exerted in y-direction


F=0.763 N
So the resultant force R


R=1.079
So the force required to hold the pipe is 1.08 N.