R = distance
dr/dt speed or with a direction, velocity
d(dr/dt)/dt = the time derivative of the velocity is called acceleration.
Speed is a scalar. Acceleration is a vector.
Answer:
the car to the right
Explanation:
its in the name the RIGHT of way hope it helps good luck
Answer:
0.024 m = 24.07 mm
Explanation:
1) Notation
= tensile stress = 200 Mpa
= plane strain fracture toughness= 55 Mpa
= length of a surface crack (Variable of interest)
2) Definition and Formulas
The Tensile strength is the ability of a material to withstand a pulling force. It is customarily measured in units (F/A), like the pressure. Is an important concept in engineering, especially in the fields of materials and structural engineering.
By definition we have the following formula for the tensile stress:
(1)
We are interested on the minimum length of a surface that will lead to a fracture, so we need to solve for 
Multiplying both sides of equation (1) by 
(2)
Sequaring both sides of equation (2):
(3)
Dividing both sides by
we got:
(4)
Replacing the values into equation (4) we got:
![\lambda=\frac{1}{\pi}[\frac{55 Mpa\sqrt{m}}{1.0(200Mpa)}]^2 =0.02407m](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5B%5Cfrac%7B55%20Mpa%5Csqrt%7Bm%7D%7D%7B1.0%28200Mpa%29%7D%5D%5E2%20%3D0.02407m)
3) Final solution
So the minimum length of a surface crack that will lead to fracture, would be 24.07 mm or more.
Answer:
b). Occurs at the outer surface of the shaft
Explanation:
We know from shear stress and torque relationship, we know that

where, T = torque
J = polar moment of inertia of shaft
τ = torsional shear stress
r = raduis of the shaft
Therefore from the above relation we see that

Thus torsional shear stress, τ is directly proportional to the radius,r of the shaft.
When r= 0, then τ = 0
and when r = R , τ is maximum
Thus, torsional shear stress is maximum at the outer surface of the shaft.