You get 493.41 when
you subtract 15.54 from 508.953 using the rules for significant figures.
For addition
and subtraction, look at the decimal portion (i.e., to the right of the decimal
point) of the numbers ONLY. Here is what to do:
1) Count the
number of significant figures in the decimal portion of each number in the
problem. (The digits to the left of the decimal place are not used to determine
the number of decimal places in the final answer.)
2) Add or
subtract in the normal fashion.
3) Round the
answer to the LEAST number of places in the decimal portion of any number in
the problem.
The correct answer between all the choices given is the
third choice or letter C. I am hoping that this answer has satisfied your query
and it will be able to help you in your endeavor, and if you would like, feel
free to ask another question.
Answer:
I do believe its B because its parallel
Explanation:
Metal ores
Explanation:
in an area where subduction has occurred in times past, metal ores are likely to be found.
Metallic ores find subduction zone regions very favorable to crystallize out of a magma.
- Ores have different modes of formation.
- Typically, they are found in hydrothermal vents and black smokers of igneous intrusives.
- These are igneous terrains where metallic sulfides and other minerals crystallize out of magmatic body.
- Metals in magma usually have large sizes and do not partition easily in the melt.
At a subduction zone, partial melting of the subducting plate forces magma into nearby country rock as an intrusive and to the ocean floor where they form black smokers.
Learn more:
Rocks brainly.com/question/2740663
#learnwithBrainly
Answer:
T = 17649.03 N = 17.65 KN
Explanation:
The tension in the cable must be equal to the apparent weight of the passenger. For upward acceleration:

where,
T = Tension in cable = ?
= Apparent weight
m = mass = 1603 kg
g = acceleration due to gravity = 9.81 m/s²
a = acceleration of elevator = 1.2 m/s²
Therefore,

<u>T = 17649.03 N = 17.65 KN</u>
Answer:
to overcome the out of friction we must increase the angle of the plane
Explanation:
To answer this exercise, let's propose the solution of the problem, write Newton's second law. We define a coordinate system where the x axis is parallel to the plane and the other axis is perpendicular to the plane.
X axis
fr - Wₓ = m a (1)
Y axis
N-
= 0
N = W_{y}
let's use trigonometry to find the components of the weight
sin θ = Wₓ / W
cos θ = W_{y} / W
Wₓ = W sin θ
W_{y} = W cos θ
the friction force has the formula
fr = μ N
fr = μ Wy
fr = μ mg cos θ
from equation 1
at the point where the force equals the maximum friction force
in this case the block is still still so a = 0
F = fr
F = (μ mg) cos θ
We can see that the quantities in parentheses with constants, so as the angle increases, the applied force must be less.
This is the force that balances the friction force, any force slightly greater than F initiates the movement.
Consequently, to overcome the out of friction we must increase the angle of the plane
the correct answer is to increase the angle of the plane