Answer:
10.028%
Explanation:
= Angle between polarizer
The polarized light after passing through first polarizer

The polarized light after passing through second polarizer

The polarized light after passing through third polarizer


The percent of the light gets through this combination of filters is 10.028%
Answer:
The time is 0.5 sec.
Explanation:
Given that,
Voltage V= 12.00 V
Inductance L= 1.20 H
Current = 3.00 A
Increases rate = 8.00 A
We need to calculate change in current

We need to calculate the time interval
Using formula of inductor


Where,
= change in current
V = voltage
L = inductance
Put the value into the formula


Hence, The time is 0.5 sec.
Answer:
The ball stops instantaneously at the topmost point of the motion.
Explanation:
Assume we have thrown a ball up in the air. For that we have given a force on the ball and it acquires an initial velocity in the upward direction.
The forces that resist the motion of the ball in the upward direction are the force of gravity and air resistance. The ball will instantaneously come to rest when the velocity of the ball reduces to zero.
The two forces acting in the downward direction reduces its speed continuously and it becomes zero at the topmost point.
If both bars are made of a good conductor, then their specific heat capacities must be different. If both are metals, specific heat capacities of different metals can vary by quite a bit, eg, both are in kJ/kgK, Potassium is 0.13, and Lithium is very high at 3.57 - both of these are quite good conductors.
If one of the bars is a good conductor and the other is a good insulator, then, after the surface application of heat, the temperatures at the surfaces are almost bound to be different. This is because the heat will be rapidly conducted into the body of the conducting bar, soon achieving a constant temperature throughout the bar. Whereas, with the insulator, the heat will tend to stay where it's put, heating the bar considerably over that area. As the heat slowly conducts into the bar, it will also start to cool from its surface, because it's so hot, and even if it has the same heat capacity as the other bar, which might be possible, it will eventually reach a lower, steady temperature throughout.
Answer:
a) B = 1.99 x 10⁻⁴ Tesla
b) B = 0.88 x 10⁻⁴ Tesla
Explanation:
According to Biot - Savart Law, the magnetic field due to a currnt carrying straight wire is given as:
B = μ₀ I L/4πr²
where,
μ₀ = permebility of free space = 1.25 x 10⁻⁶ H m⁻¹
I = current = 2 A
L = Length of wire = 40 cm = 0.4 m
a)
r = radius of magnetic field = 2 cm = 0.02 m
Therefore,
B = (1.25 x 10⁻⁶ H m⁻¹)(2 A)(0.4 m)/4π(0.02 m)²
<u>B = 1.99 x 10⁻⁴ Tesla</u>
<u></u>
b)
r = radius of magnetic field = 3 cm = 0.03 m
Therefore,
B = (1.25 x 10⁻⁶ H m⁻¹)(2 A)(0.4 m)/4π(0.03 m)²
<u>B = 0.88 x 10⁻⁴ Tesla</u>