Plug in the corresponding values into y = mx + b
8.18 in for y
1.31 in for m
17.2 in for b
8.18 = 1.31x + 17.2
Now bring 17.2 to the left side by subtracting 17.2 to both sides (what you do on one side you must do to the other). Since 17.2 is being added on the right side, subtraction (the opposite of addition) will cancel it out (make it zero) from the right side and bring it over to the left side.
8.18 - 17.2 = 1.31x
-9.02 = 1.31x
Then divide 1.31 to both sides to isolate x. Since 1.31 is being multiplied by x, division (the opposite of multiplication) will cancel 1.31 out (in this case it will make 1.31 one) from the right side and bring it over to the left side.
-9.02/1.31 = 1.31x/1.31
x ≈ -6.8855
x is roughly -6.89
Hope this helped!
~Just a girl in love with Shawn Mendes
Answer:

Explanation:
Distance travelled = 200 metre
Time taken = 24 second
Velocity = ?
<u>Finding </u><u>the</u><u> </u><u>velocity</u><u> </u>



Hope I helped!
Best regards!
Answer:
Definition of envelop
transitive verb
1: to enclose or enfold completely with or as if with a covering
2: to mount an attack on (an enemy's flank)
Explanation:
Show that the motion of a mass attached to the end of a spring is SHM
Consider a mass "m" attached to the end of an elastic spring. The other end of the spring is fixed
at the a firm support as shown in figure "a". The whole system is placed on a smooth horizontal surface.
If we displace the mass 'm' from its mean position 'O' to point "a" by applying an external force, it is displaced by '+x' to its right, there will be elastic restring force on the mass equal to F in the left side which is applied by the spring.
According to "Hook's Law
F = - Kx ---- (1)
Negative sign indicates that the elastic restoring force is opposite to the displacement.
Where K= Spring Constant
If we release mass 'm' at point 'a', it moves forward to ' O'. At point ' O' it will not stop but moves forward towards point "b" due to inertia and covers the same displacement -x. At point 'b' once again elastic restoring force 'F' acts upon it but now in the right side. In this way it continues its motion
from a to b and then b to a.
According to Newton's 2nd law of motion, force 'F' produces acceleration 'a' in the body which is given by
F = ma ---- (2)
Comparing equation (1) & (2)
ma = -kx
Here k/m is constant term, therefore ,
a = - (Constant)x
or
a a -x
This relation indicates that the acceleration of body attached to the end elastic spring is directly proportional to its displacement. Therefore its motion is Simple Harmonic Motion.