<h2>
Answer:442758.96N</h2>
Explanation:
This problem is solved using Bernoulli's equation.
Let
be the pressure at a point.
Let
be the density fluid at a point.
Let
be the velocity of fluid at a point.
Bernoulli's equation states that
for all points.
Lets apply the equation of a point just above the wing and to point just below the wing.
Let
be the pressure of a point just above the wing.
Let
be the pressure of a point just below the wing.
Since the aeroplane wing is flat,the heights of both the points are same.

So,
Force is given by the product of pressure difference and area.
Given that area is
.
So,lifting force is 
Answer:
4 m/s
Explanation:
Momentum is defined as:

where
m is the mass of the object
v is its velocity
For the object in this problem, we know:
p = 200 kg m/s is the momentum
m = 50 kg is the mass
Solving for the velocity, we find:

the correct choice is
C) an electric current.
as a magnet is turned quickly relative to a coil, the magnetic flux linked with coil varies due to variation of angle of direction of magnetic field with normal to the plane of coil. the coil resist this change of magnetic flux in it by inducing emf in it so as to nullify the variation in magnetic flux. Due to this induced emf , electric current flows through the coil.
Kinetic Energy means <span>energy that a body possesses by virtue of being in motion. I hope im not too late</span>
Answer:
4800
Explanation:
The change in velocity of the car is 17-13=4m/s. Since the change in momentum is the mass multiplied by the change in velocity, the answer is 4*1200=4800. Hope this helps!