Answer:
Period of one vibration = 0.00215 second (Approx.)
Wavelength {Is speed of sound is 343 m/s] = 0.736 m (Approx.)
Explanation:
Given:
Frequency of wave = 466 Hz
Find:
Period of one vibration
Wavelength {Is speed of sound is 343 m/s]
Computation:
Period of one vibration = 1/F
Period of one vibration = 1 / 466
Period of one vibration = 0.00215 second (Approx.)
Wavelength = Velocity / Frequency
Wavelength {Is speed of sound is 343 m/s] = 343 / 466
Wavelength {Is speed of sound is 343 m/s] = 0.736 m (Approx.)
Ohms law = v= Ir
V= 0.02 x 4000 = 80v
Answer:
The changing magnetic field within the loops of wire creates an electric field that pushes the electrons in the wire through the lamp, briefly lighting it
Explanation:
The GE demonstrates that a voltage, and hence a current, can be generated by plunging a coil of wire into and out of a strong magnet.
IMA stands for ideal mechanical advantage, which is the theoretical force amplification factor on an ideal mechanical device free of friction, deformations, etc.
If the applied force (effort) is 50N, then the force applied to the resistance is multiplied by the IMA=2 to get 100N.
Answer:
160N
Explanation:
Moments must be conserved - so.

