I think you would use F = ma
F = 65*10
F = 650N
(The 10m/s is from acceleration due to gravity)
Answer:
Explanation:
Given,
- Work done by the rope 900 m/s.
- Angle of inclination of the slope =
- Initial speed of the skier = v = 1.0 m/s
- Length of the inclined surface = d = 8.0 m
part (a)
The rope is doing the work against the gravity on the skier to uplift up to the inclined surface. Therefore the work done by the rope is equal to the work done on the skier due to the gravity
In both cases the height attained by the skier is equal. and the work done by gravity does not depend upon the speed of the skier.
part (b)
- Initial speed of the skier = v = 1.0 m/s.
Rate of the work done by the rope is power of the rope.
Part (c)
- Initial speed of the skier = v = 2.0 m/s.
Rate of the work done by the rope is power of the rope.
Acceleration is found if we have the force and mass.
With the following equation: F = ma, we can find the missing values.
F = 25n
M = 0.5 kg
a = ?
a = f/m
a = 25/0.5
a = 50
a = 50 m/s
So, the acceleration is 50 m/s^2
the answers going to be A