"At the bottom, the car has X joules of mechanical energy" is the one among the following choices given in the question that <span>the law of conservation of energy predict about the car. The correct option among all the options that are given in the question is the second option or option "B". I hope the answer helped you.</span>
B would be the correct answer
Wavelength = (speed) / (frequency) = (460 m/s) / (230/sec) = <em>2 meters</em>
Answer:
2,400kg * m/s
Explanation:
You are missing some information in the question but the rest could be found some where else.
The question gives the masses and starting velocity of each car.
Car 1: m = 600kg and sv = 4m/s
Car 2: m 400kg and sv = 0m/s
Find the momentum of both cars.
Car 1: 600 * 4 = 2400
Car 2: 400 * 0 = 0
Add both.
2400 + 0 = 2400
Best of Luck!
Answer:
Explanation:
According to heisenberg uncertainty Principle
Δx Δp ≥ h / 4π , where Δx is uncertainty in position , Δp is uncertainty in momentum .
Given
Δx = 1 nm
Δp ≥ h /1nm x 4π
≥ 6.6 x 10⁻³⁴ / 10⁻⁹ x 4 π
≥ . 5254 x ⁻²⁵
h / λ ≥ . 5254 x ⁻²⁵
6.6 x 10⁻³⁴ /. 5254 x ⁻²⁵ ≥ λ
12.56 x 10⁻⁹ ≥ λ
longest wave length = 12.56 n m