1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Contact [7]
3 years ago
11

A planet's temperature depends on its distance from the Sun as well as the strength of its greenhouse effect. Let's remove the e

ffect of distance from the Sun by just considering how the temperature of a planet changes due to the presence of its atmosphere. Calculate the difference in temperature for each planet with and without its atmosphere, and then rank the planets in order of increasing greenhouse effect.
Earth, Venus, Mars
Physics
1 answer:
pishuonlain [190]3 years ago
5 0

Answer:

Smallest Effect

Mars

Earth

Venus

Largest Effect

You might be interested in
What does a motion diagram represent? ​
Stels [109]

Answer:

A motion diagram represents the motion of an object by displaying its location at various equally spaced times on the same diagram. Motion diagrams are a pictorial description of an object's motion. They show an object's position and velocity initially, and present several spots in the center of the diagram.

Explanation:

^

6 0
3 years ago
A tank has the shape of an inverted circular cone with height 16m and base radius 3m. The tank is filled with water to a height
rewona [7]

Answer:

W=17085KJ

Explanation:

From the question we are told that:

Height H=16m

Radius R=3

Height of water H_w=9m

Gravity g=9.8m/s

Density of water \rho=1000kg/m^3

Generally the equation for Volume of water is mathematically given by

 dv=\pi*r^2dy

 dv=\frac{\piR^2}{H^2}(H-y)^2dy

Where

   y is a random height taken to define dv

Generally the equation for Work done to pump water is mathematically given by

 dw=(pdv)g (H-y)

Substituting dv

 dw=(p(=\frac{\piR^2}{H^2}(H-y)^2dy))g (H-y)

 dw=\frac{\rho*g*R^2}{H^2}(H-y)^3dy

Therefore

 W=\int dw

 W=\int(\frac{\rho*g*R^2}{H^2}(H-y)^3)dy

 W=\rho*g*R^2}{H^2}\int((H-y)^3)dy)

 W=\frac{1000*9.8*3.142*3^2}{9^2}[((9-y)^3)}^9_0

 W=3420.84*0.25[2401-65536]

 W=17084965.5J

 W=17085KJ

 

'

'

4 0
3 years ago
A Block slides down an incline that makes an angle of 30? with the horizontal direction. The coefficient of kinetic friction bet
astraxan [27]

Answer:

Acceleration = 2.35 m/s^{2}

Speed = 8.67 m/s

Explanation:

The coefficient of friction , u =0.3

The angle of incline = 30°

The two forces acting on block are weight and friction.

weight along the incline = mg cos60° = \frac{mg}{2} = 0.5 mg

Friction along incline = umg cos30° = mg 0.3\times \frac{\sqrt{3}}{2}

Friction along incline  = 0.26 mg

Net force acting on the weight = (0.5 - 0.26) mg = 0.24 mg

Acceleration = \frac{net force}{mass} = 0.24 g = 2.35 m/s^{2}

The height of incline = 8 m

Length of the inclined edge = 16 m

v^{2}=u^{2}+2as

v^{2}= 2\times 0.24 \times 9.8\times 16

v= 8.67 m/s

5 0
3 years ago
We can expect the force of friction to be greater for an object moving on a surface if the surfaces in contact are
nikitadnepr [17]

Answer:

c

Explanation:

Friction is caused by how rough and object is, and how much the object weighs, as this causes it to drag more.

8 0
2 years ago
A 460 g , 6.0-cm-diameter can is filled with uniform, dense food. It rolls across the floor at 1.1 m/s . Part A What is the can'
Reika [66]

Answer:

the can's kinetic energy is 0.42 J

Explanation:

given information:

Mass, m = 460 g = 0.46 kg

diameter, d = 6 cm, so r = d/2 = 6/2 = 3 cm = 0.03 m

velocity, v = 1.1 m/s

the kinetic energy of the can is the total of kinetic energy of the translation and rotational.

KE = \frac{1}{2} I ω^2 + \frac{1}{2} mv^{2}

where

I = \frac{1}{2} mr^{2} and ω = \frac{v}{r}

thus,

KE = \frac{1}{2} \frac{1}{2} mr^{2} (\frac{v}{r})^2 + \frac{1}{2} mv^{2}

     = \frac{1}{2} \frac{1}{2} mr^{2} \frac{v^{2} }{r^{2}} + \frac{1}{2} mv^{2}

     = \frac{1}{4} mv^{2} + \frac{1}{2} mv^{2}

     = \frac{3}{4} mv^{2}

     = \frac{3}{4} (0.46) (1.1)^{2}

     = 0.42 J

8 0
3 years ago
Other questions:
  • Under what conditions will the projectile have the greatest velocity when it hits the ground?
    9·1 answer
  • Which of these has MOSTLY kinetic energy? the ball (B) the catcher (D) the pitcher (A) the batter (C)
    10·1 answer
  • What is the distance between two points (3,4,-5) and (2,1,0,)
    14·1 answer
  • According to Faraday's law, voltage cannot be changed by changing the magnetic field strength.
    9·1 answer
  • Calculate the quantity of work, in joules, associated with the compression of a gas from 5.64 L to 3.35 L by a constant pressure
    13·1 answer
  • The only force acting on a 3.4 kg canister that is moving in an xy plane has a magnitude of 3.0 N. The canister initially has a
    8·1 answer
  • How is Uranus similar to Jupiter?
    9·2 answers
  • What is a black hole's escape velocity?
    6·1 answer
  • The velocity of an object with mass = 2kg is given as a function of time:
    6·1 answer
  • Powers of 10
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!