Answer:
185.25 m/s
Explanation:
consider the motion of the combination of bullet and block after the collision
v₀ = initial speed just after the collision
v' = final speed = 0 m/s
μ = Coefficient of friction = 0.6
g = acceleration due to gravity = 9.8 m/s²
a = acceleration of the combination = - μ g = - (0.6) (9.8) = - 5.88 m/s²
d = stopping distance = 13 m
using the kinematics equation
v'² = v₀² + 2 a d
0² = v₀² + 2 (- 5.88) (13)
v₀ = 12.4 m/s
m = mass of the bullet = 9.9 g = 0.0099 kg
M = mass of the wood = 138 g = 0.138 kg
v = speed of bullet before collision
v₀ = speed of combination after the collision = 12.4 m/s
Using conservation of momentum
m v = (m + M) v₀
(0.0099) v = (0.0099 + 0.138) (12.4)
v = 185.25 m/s
D. 289
Take the formula:
K=5/9(Fahrenheit-32)+273
Plug in Fahrenheit
K=5/9 (60-32)+273
From here it is simple math and you can plug it into your calculator getting 288.5555556 and round to 289
Answer:
True the plastic will float because of the principle of flotation or buoyancy
Explanation:
Buoyancy explains it all!!
Buoyancy is the upward force/upthrust experienced by a body immersed totally or partially in a liquid.
According to the principle of flotation:
<em>"when a body is totally or partially immersed in liquid it experiences an upthrust which is equal to the volume of fluid displaced"</em>
The plastic will float due to the fact the average density of the total volume of the plastic and the air inside it is less than the same volume of water it is floating in
Answer:
The structure of Germanium crystals will be destroyed at higher temperature. However, Silicon crystals are not easily damaged by excess heat. Peak Inverse Voltage ratings of Silicon diodes are greater than Germanium diodes. Si is less expensive due to the greater abundance of element.
Running on sand requires 1.6 times more energy spent than running on hard surface, so the force applied by our foot on sand is less.