The resultant vector is 5.2 cm at a direction of 12⁰ west of north.
<h3>
Resultant of the two vectors</h3>
The resultant of the two vectors is calculated as follows;
R = a² + b² - 2ab cos(θ)
where;
- θ is the angle between the two vectors = 45° + (90 - 57) = 78⁰
- a is the first vector
- b is the second vector
R² = (3.7)² + (4.5)² - (2 x 3.7 x 4.5) cos(78)
R² = 27.02
R = 5.2 cm
<h3>Direction of the vector</h3>
θ = 90 - 78⁰
θ = 12⁰
Thus, the resultant vector is 5.2 cm at a direction of 12⁰ west of north.
Learn more about resultant vector here: brainly.com/question/28047791
#SPJ1
Answer:
The boat's acceleration is 4 m/s²
Explanation:
This question seeks to test the knowledge of acceleration and how to calculate acceleration when the speed is provided. Hence, the formula for acceleration would be used here.
Acceleration (m/s²) = speed (in m/s) ÷ time (in seconds)
Acceleration = 80 m/s ÷ 20 secs
Acceleration = 4 m/s² or 4 ms⁻²
The boat's acceleration is 4 m/s²
Infrasound sound is any sound that are below the sound a human can hear, elephants use it to communicate with other elephants.
It looks like a refractor.
Answer:
d_2 = 4d_1
Explanation:
The range or horizontal distance covered by a projectile projected with a velocity U at an angel of θ to the horizontal is given by
R = U²sin2θ/g
Let the range or horizontal distance of ball 1 with initial velocity U projected at an angle θ = 55° be
d_1 = U²sin2θ/g
Let the range or horizontal distance of ball 2 with initial velocity V = 2U projected at an angle θ = 55° be
d_2 = V²sin2θ/g
= (2U)²sin2θ/g
= 4U²sin2θ/g
= 4d_1 (since d_1 = U²sin2θ/g)
So, the ball 2 lands a distance d_2 = 4d_1 from the initial point.