Using electronegativity difference is a good guide to the ionic/ covalent nature. Large differences indicate greater ionic character, small differences more covalent character. The larger the difference in electronegativity the more ionic properties a bond is said to have. The smaller the difference in electronegativity the more covalent properties a bond is said to have.
Ionic bonding is formed through electrostatic attraction between a cation and anion. Foe example, Sodium fluoride has ionic bonding because it is composed by sodium and Fluorine (a non metal). On the other hand, covalent bonding is characterized by atoms sharing pairs of electrons. For example; methane has covalent bonding; carbon has 4 valence electrons and hydrogen has 1; when they bond they have a total of 8 electrons and satisfies the octet rule.
Answer: Option (c) is the correct answer.
Explanation:
A limiting reagent is defined as a reagent that completely gets consumed in a chemical reaction. A limiting reagent limits the formation of products.
For example, we have given 5 mol of A and the reaction is 
Whereas when 4 mol B will react with 2 mol of A. Hence, 8 mol of B will react with 4 mol A as follows.
= 4 mol
As, the given moles of A is more than the required moles. Thus, it is considered as an excess reagent.
Hence, B is a limiting reagent because it limits the formation of products.
Thus, we can conclude that limiting reactant is the term used to describe the reactant that is used up completely and controls the amount of product that can be produced during a chemical reaction.
Answer:
a) nitrogen
b) nitrogen =5
Oxygen = 6
Fluorine =7
Explanation:
Usually, if we have two or more elements in a compound, the central atom in the compound is the atom having the least value of electro negativity.
If we consider fluorine, oxygen and nitrogen; nitrogen is the least electronegative of the trio hence it should be the central atom of the triatomic molecule.
The number of valence electrons on the valence shell of each atom is shown below;
nitrogen =5
Oxygen = 6
Fluorine =7
Answer:
P = 0.0009417 atm
Or,
P = 9.417 × 10⁻⁴ atm
Or,
P = 0.0954157 kPa
Or,
P = 0.715677 mmHg (Torr)
Explanation:
Data Given:
Moles = n = 3.2 mol
Temperature = T = 312 K
Pressure = P = ?
Volume = V = 87 m³ = 87000 L
Formula Used:
Let's assume that the gas is acting as an Ideal gas, the according to Ideal Gas Equation,
P V = n R T
where; R = Universal Gas Constant = 0.082057 atm.L.mol⁻¹.K⁻¹
Solving Equation for P,
P = n R T / V
Putting Values,
P = (3.2 mol × 0.082057 atm.L.mol⁻¹.K⁻¹ × 312 K) ÷ 87000 L
P = 0.0009417 atm
Or,
P = 9.417 × 10⁻⁴ atm
Or,
P = 0.0954157 kPa
Or,
P = 0.715677 mmHg (Torr)