When solving a system by graphing you need to see where the lines intersect.
Below is a picture of these lines graphed. The green line is y = x +4 and the blue line is y = 4x - 1
The red dot represents the intersection is about (1, 5)
The original point is: (1.667, 5.667)
Hope this helped!
You can see how this works by thinking through what's going on.
In the first year the population declines by 3%. So the population at the end of the first year is the starting population (1200) minus the decline: 1200 minus 3% of 1200. 3% of 1200 is the same as .03 * 1200. So the population at the end of the first year is 1200 - .03 * 1200. That can be written as 1200 * (1 - .03), or 1200 * 0.97
What about the second year? The population starts at 1200 * 0.97. It declines by 3% again. But 3% of what??? The decline is based on the population at the beginning of the year, NOT based no the original population. So the decline in the second year is 0.03 * (1200 * 0.97). And just as in the first year, the population at the end of the second year is the population at the beginning of the second year minus the decline in the second year. So that's 1200 * 0.97 - 0.03 * (1200 * 0.97), which is equal to 1200 * 0.97 (1 - 0.03) = 1200 * 0.97 * 0.97 = 1200 * 0.972.
So there's a pattern. If you worked out the third year, you'd see that the population ends up as 1200 * 0.973, and it would keep going like that.
So the population after x years is 1200 * 0.97x
Answer:
The p-value of the test statistic from the standard normal table is 0.0017 which is less than the level of significance therefore, the null hypothesis would be rejected and it can be concluded that there is sufficient evidence to support the claim that less than 20% of the pumps are inaccurate.
Step-by-step explanation:
Here, 1304 gas pumps were not pumping accurately and 5689 pumps were accurate.
x = 1304, n = 1304 + 5689 = 6993
The level of significance = 0.01
The sample proportion of pump which is not pumping accurately can be calculated as,
The claim is that the industry representative less than 20% of the pumps are inaccurate.
The hypothesis can be constructed as:
H0: p = 0.20
H1: p < 0.20
The one-sample proportion Z test will be used.
The test statistic value can be obtained as:

UH “ALL OF THE ABOVE??” OR TRY THE SECOND ONE
Answer: D
Used my graphic calculator