Answer:
1.8 cm
Explanation:
= mass of the singly charged positive ion = 3.46 x 10⁻²⁶ kg
= charge on the singly charged positive ion = 1.6 x 10⁻¹⁹ C
=Potential difference through which the ion is accelerated = 215 V
= Speed of the ion
Using conservation of energy
Kinetic energy gained by ion = Electric potential energy lost

= Radius of the path followed by ion
= Magnitude of magnetic field = 0.522 T
the magnetic force on the ion provides the necessary centripetal force, hence

Explanation:
Momentum = mass × velocity
p = (65 kg) (5 m/s)
p = 325 kg m/s
Answer:
44.4°
Explanation:
Use SOH-CAH-TOA.
Sine = Opposite / Hypotenuse
Cosine = Adjacent / Hypotenuse
Tangent = Opposite / Adjacent
You're given an unknown angle, the adjacent side to that angle, and the hypotenuse. So use cosine.
Cosine = Adjacent / Hypotenuse
cos A = 10 / 14
A = cos⁻¹(5/7)
A ≈ 44.4°
The momentum of the rolling ball will have less momentum than before the collision and the stationary ball will have more momentum after the collusion.