Answer:
A
Explanation:
What the equation is tell you is that for every 3 mols of NO2 you get 2 mol of HNO3
3 mol NO2 / 2 mol HNO2 ===> 300.00 mol NO2 / x Cross multiply
3x = 2 * 300
3x = 600 Divide by 3
3x/3 = 600/3 Do the division
x = 200.00
Answer:
All right. So let's calculate the density of a glass marble. Remember that the formula for density is mass over volume. So if I know that the masses 18.5 g. And I know that the um volume is 6.45 cubic centimeters. I can go ahead and answer this to three significant figures. So it's going to be 2.87 grams per cubic centimeter. Okay, that's our density. Now, density is an intensive process. Okay. We're an intensive property. I really should say. It doesn't depend on how much you have. Mhm. If I have one marble, its density is going to be 2.87 g per cubic centimeter. If I have two marbles, the density will be the same because I'll double the mass and I'll also double the volume. So when I divide them I'll get the same number. Okay, that's what makes it an intensive property. No matter how many marbles I have, they'll have the same density. Mass though is not an intensive property. So if I have six marbles and I want to know what the massive six marbles is. Well, I know the mass of each marble is 18.5 g. So the mass of six marbles Is going to be 100 11 g. Because mass is an extensive property. It depends on how much you have. If I change the number of marbles, I'm going to change the mass. That's an extensive property. All right. So we've calculated the density. We've calculated the mass and then what happens to the density of one marble compared to six marbles as we mentioned before. Since densities and intensive property, the densities will be the same, no matter how may.
Explanation:
Answer:
Explanation:
An object decreases in size due to the collision of materials. An object increases in size due to the addition of materials. Gas particles are formed from solar nebula materials.
Hydrogen (H) 1s1
2 Helium (He) 1s2
3 Lithium (Li) [He] 2s1
4 Beryllium (Be) [He] 2s2
5 Boron (B) [He] 2s2 2p1
6 Carbon (C) [He] 2s2 2p2
7 Nitrogen (N) [He] 2s2 2p3
8 Oxygen (O) [He] 2s2 2p4
9 Fluorine (F) [He] 2s2 2p5
10 Neon (Ne) [He] 2s2 2p6
11 Sodium (Na) [Ne] 3s1
12 Magnesium (Mg) [Ne] 3s2
13 Aluminium (Al) [Ne] 3s2 3p1
14 Silicon (Si) [Ne] 3s2 3p2
15 Phosphorus (P) [Ne] 3s2 3p3
16 Sulphur (S) [Ne] 3s2 3p4
17 Chlorine (Cl) [Ne] 3s2 3p5
18 Argon (Ar) [Ne] 3s2 3p6
19 Potassium (K) [Ar] 4s1
20 calcium (ca) [Ar] 4s2