1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Butoxors [25]
3 years ago
14

In the diagram, q1, q2, and q3 are in a straight line.

Physics
1 answer:
schepotkina [342]3 years ago
3 0

Answer:

did anyone figure it out

Explanation:

please help

You might be interested in
How do contour lines help you visualize a feature of Earth's solid surface
kompoz [17]
A contour line represents a certain vertical height above the contour line shown. They are means of representing 3D hills and moutains on 2D paper.
6 0
3 years ago
The mass of an object is 45 kilograms. its weight on earth is what?
Kitty [74]
Weight = 45 * 9.8 = 441 N
4 0
4 years ago
Why is velocity most important in space launch?
Debora [2.8K]
Escape velocity is the velocity an object needs to escape the gravitational influence of a body if it is in free fall, i.e. no force other than gravity acts on it. Your rocket is not in free fall since it is using its thruster to maintain a constant velocity so the notion of "escape velocity" does not apply to it.
6 0
3 years ago
Read 2 more answers
I will gib brainlyest or whatever.
astraxan [27]

Answer:

Range of the projectile: approximately 1.06 \times 10^{3}\; {\rm m}.

Maximum height of the projectile: approximately 80\; {\rm m} (approximately 45.0\; {\rm m} above the top of the cliff.)

The projectile was in the air for approximately 7.07\; {\rm s}.

The speed of the projectile would be approximately 155\; {\rm m \cdot s^{-1}} right before landing.

(Assumptions: drag is negligible, and that g = 9.81\; {\rm m\cdot s^{-1}}.)

Explanation:

If drag is negligible, the vertical acceleration of this projectile will be constantly a_{y} = (-g) = (-9.81)\; {\rm m\cdot s^{-2}}. The SUVAT equations will apply.

Let \theta denote the initial angle of elevation of this projectile.

Initial velocity of the projectile:

  • vertical component: u_{y} = u\, \sin(\theta) = 153\, \sin(11.2^{\circ}) \approx 29.71786\; {\rm m\cdot s^{-1}}
  • horizontal component: u_{x} = u\, \cos(\theta) = 153\, \cos(11.2^{\circ}) \approx 150.086\; {\rm m\cdot s^{-1}}.

Final vertical displacement of the projectile: x_{y} = (-35)\; {\rm m} (the projectile landed 35\: {\rm m} below the top of the cliff.)

Apply the SUVAT equation v^{2} - u^{2} = 2\, a\, x to find the final vertical velocity v_{y} of this projectile:

{v_{y}}^{2} - {u_{y}}^{2} = 2\, a_{y}\, x_{y}.

\begin{aligned} v_{y} &= -\sqrt{{u_{y}}^{2} + 2\, a_{y} \, x_{y}} \\ &= -\sqrt{(29.71786)^{2} + 2\, (-9.81)\, (-35)} \\ &\approx (-39.621)\; {\rm m\cdot s^{-1}}\end{aligned}.

(Negative since the projectile will be travelling downward towards the ground.)

Since drag is negligible, the horizontal velocity of this projectile will be a constant value. Thus, the final horizontal velocity of this projectile will be equal to the initial horizontal velocity: v_{x} = u_{x}.

The overall final velocity of this projectile will be:

\begin{aligned}v &= \sqrt{(v_{x})^{2} + (v_{y})^{2}} \\ &= \sqrt{(150.086)^{2} + (-39.621)^{2}} \\ &\approx 155\; {\rm m\cdot s^{-1}} \end{aligned}.

Change in the vertical component of the velocity of this projectile:

\begin{aligned} \Delta v_{y} &= v_{y} - u_{y} \\ &\approx (-39.621) - 29.71786 \\ &\approx 69.3386 \end{aligned}.

Divide the change in velocity by acceleration (rate of change in velocity) to find the time required to achieve such change:

\begin{aligned}t &= \frac{\Delta v_{y}}{a_{y}} \\ &\approx \frac{69.3386}{(-9.81)} \\ &\approx 7.0682\; {\rm s}\end{aligned}.

Hence, the projectile would be in the air for approximately 7.07\; {\rm s}.

Also the horizontal velocity of this projectile is u_{x} \approx 150.086\; {\rm m\cdot s^{-1}} throughout the flight, the range of this projectile will be:

\begin{aligned}x_{x} &= u_{x}\, t \\ &\approx (150.086)\, (7.0682) \\ &\approx 1.06 \times 10^{3}\; {\rm m} \end{aligned}.

When this projectile is at maximum height, its vertical velocity will be 0. Apply the SUVAT equation v^{2} - u^{2} = 2\, a\, x to find the maximum height of the projectile (relative to the top of the 35\; {\rm m} cliff.)

\begin{aligned}x &= \frac{{v_{y}}^{2} - {u_{y}}^{2}}{2\, a} \\ &\approx \frac{0^{2} - 29.71786^{2}}{2\, (-9.81)} \\ &\approx 45.0\; {\rm m}\end{aligned}.

Thus, the maximum height of the projectile relative to the ground will be approximately 45.0\; {\rm m} + 35\; {\rm m} = 80\; {\rm m}.

5 0
1 year ago
What is the momentum of an object with 9.74 kg and 15 m/s?​
dolphi86 [110]

Answer: 146.1 kg/m/s

Explanation: Momentum is equal to mass times velocity, so you do 9.74 kg times 15 m/s and get 146.1 kg/m/s.

6 0
3 years ago
Other questions:
  • Which part of the earth do the suns direct rays hit during the summer solstice
    8·2 answers
  • The absolute pressure below the surface of a freshwater lake is 3.51 x 10^5 Pa. At what depth does this pressure occur? Assume t
    11·1 answer
  • Consider what happens at the moment when the block leaves the surface of the globe. Which of the following statements are correc
    7·2 answers
  • The electric field strength is 1.70 × 104 N/C inside a parallel-plate capacitor with a 0.800 m spacing. An electron is released
    12·1 answer
  • Consider the following equations of motion.
    14·1 answer
  • What is the production​ function? The production function is the relationship between
    10·1 answer
  • What does it mean for an atom to be electronegative? How does this affect the shape and overall charge of a water molecule?
    14·1 answer
  • 13. A lever does 5.0 J of work on a 0.10-kg ball bearing in a pinball machine. The ball's
    11·1 answer
  • An old fashioned string of 80 Christmas lights is wired in series. Each bulb has a resistance of 2 Ohms and the entire string is
    8·1 answer
  • Solving a series circuit, did I do this correctly? ​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!