Answer:
1. 1 s = 1 x 10⁶ μs
2. 1 g = 0.001 kg
3. 1 km = 1000 m
4. 1 mm = 1 x 10⁻³ m
5. 1 mL = 1 x 10⁻³ L
6. 1 g = 100 dg
7. 1 cm = 1 x 10⁻² m
8. 1 ms = 1 x 10⁻³ s
Explanation:
1.
1 x 10⁻⁶ s = 1 μs
(1 x 10⁻⁶ x 10⁶) s = 1 x 10⁶ μs
<u>1 s = 1 x 10⁶ μs</u>
2.
1000 g = 1 kg
1 g = 1/1000 kg
<u>1 g = 0.001 kg</u>
3.
<u>1 km = 1000 m</u>
<u></u>
4.
<u>1 mm = 1 x 10⁻³ m</u>
<u></u>
5.
<u>1 mL = 1 x 10⁻³ L</u>
<u></u>
6.
1 x 10⁻² g = 1 dg
(1 x 10⁻² x 10²) g = 1 x 10² dg
<u>1 g = 100 dg</u>
<u></u>
7.
<u>1 cm = 1 x 10⁻² m</u>
<u></u>
8.
<u>1 ms = 1 x 10⁻³ s</u>
Answer:
The minimum thickness = 83.92 nm
Explanation:
The relation between the wavelength in a particular medium and refractive index 
where ;
= wavelength of the light in vacuum
n = refractive index of medium with respect to vacuum
For one phase change :

Replacing 1.43 for n and 480 nm for λ; we have:

t = 83.92 nm
Thus; the minimum thickness = 83.92 nm
Answer:
The solar cells transfer light energy to thermal energy.
When the battery is being charged up, chemical energy is transferred to electrical energy.
The motor is designed to transfer potential energy to kinetic energy.
Answer:
22.11 m / s
Explanation:
The falcon catches the prey from behind means both are flying in the same direction ( suppose towards the left )
initial velocity of falcon = 28 cos 35 i - 28 sin 35 j
( falcon was flying in south east direction making 35 degree from the east )
momentum = .9 ( 28 cos 35 i - 28 sin 35 j )
= 20.64 i - 14.45 j
initial velocity of pigeon
= 7 i
initial momentum = .325 x 7i
= 2.275 i
If final velocity of composite mass of falcon and pigeon be V
Applying law of conservation of momentum
( .9 + .325) V = 20.64 i - 14.45 j +2.275 i
V = ( 22.915 i - 14.45 j ) / 1.225
= 18.70 i - 11.8 j
magnitude of V
= √ [ (18.7 )² + ( 11.8 )²]
= 22.11 m / s
Answer:
Winter
Explanation:
Earth Rotates about an axis