1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sladkaya [172]
2 years ago
12

Which statement best describes how a wave would move differently through a pot of boiling water than the steam created from it?

The wave would move faster through the water than through the steam. The wave would move slower through the water than through the steam. The wave would move the same speed through the water and the steam. The wave would move through the water and steam at the same speed, but decrease in speed at the transition point.
Physics
2 answers:
timama [110]2 years ago
5 0

Answer:

The wave would move faster through the water than through the steam

Explanation:

A mechanical wave is a wave that is transmitted through the oscillations of the particles in a medium. The closer the particles in the medium are, the more efficient the transmission of the wave is (because the collisions between the particles are more frequent), and so the faster the wave.

For this reason, mechanical waves travel faster in liquids (such as water) than in gases (such as the steam): because particles in liquids are closer together than in gases, where they are more spread apart. Therefore, the correct choice is

The wave would move faster through the water than through the steam

quester [9]2 years ago
4 0
Your answer would be option A
You might be interested in
In the equation for centripetal force, which expression represents the centripetal acceleration of the object? mv2 StartFraction
Sphinxa [80]

Answer: \frac{V^{2}}{r}

Explanation:

According to Newton's 2nd Law of motion the force F is proportional to the mass Fm and acceleration a:

F=m.a (1)

On the other hand, the equation for the Centripetal force is:

F=\frac{mV^{2}}{r} (2)

Where:

V is the velocity

r is the radius of the circular motion

Making (1) and (2) equal:

m.a=\frac{mV^{2}}{r} (3)

Hence:

a=\frac{V^{2}}{r} This is the expression for the centripetal acceleration

It should be noted, this acceleration is directed toward the center of the circumference of the circular motion (that's why it's called centripetal acceleration).

3 0
3 years ago
Read 2 more answers
You illuminate the grating in a spectrometer at normal incidence θi=0° with a beam of light that has a wavelength of 6562.8 Å. T
monitta

Answer:

a) θ₁ = 23.14 ° , b) θ₂ = 51.81 °

Explanation:

An address network is described by the expression

     d sin θ = m λ

Where is the distance between lines, λ is the wavelength and m is the order of the spectrum

The distance between one lines, we can find used a rule of proportions

     d = 1/600

     d = 1.67 10⁻³ mm

    d = 1-67 10⁻³ m

Let's calculate the angle

    sin θ = m λ / d

    θ  = sin⁻¹ (m λ / d)

First order

    θ₁ = sin⁻¹ (1 6.5628 10⁻⁷ / 1.67 10⁻⁶)

    θ₁ = sin⁻¹ (3.93 10⁻¹)

    θ₁ = 23.14 °

Second order

     θ₂ = sin⁻¹ (2 6.5628 10⁻⁷ / 1.67 10⁻⁶)

     θ₂ = sin⁻¹ (0.786)

     θ₂ = 51.81 °

3 0
3 years ago
Does a car that is slowing down always have a negative acceleration explain
Zina [86]
No, because sometimes you have to stop at stop signs and stop lights.
4 0
3 years ago
Parasaurolophus was a dinosaur whose distinguishing feature was a hollow crest on the head. The 1.5-m-long hollow tube in the cr
Oksi-84 [34.3K]

Answer:

f1 = 58.3Hz, f2 = 175Hz, f3 = 291.6Hz

Explanation:

lets assume speed of sound is 350 m/s.

frequencies of a standing wave modes of an open-close tube of length L

fm = m(v/4L)

where m is 1,3,5,7......

and fm = mf1

where f1 = fundamental frequency

so therefore: f1 = 350 x 4 / 1.5

f1 = 58.3Hz

f2 = 3 x 58.3

f2 = 175Hz

f3 = 5 x 58.3

f3 = 291.6Hz

5 0
3 years ago
Point charges of 21.0 μC and 47.0 μC are placed 0.500 m apart. (a) At what point (in m) along the line connecting them is the el
rewona [7]

Answer:

a) x = 0.200 m

b)E = 3.84*10^{-4} N/C

Explanation:

q_1 = 21.0\mu C

q_1 = 47.0\mu C

DISTANCE BETWEEN BOTH POINT CHARGE = 0.5 m

by relation for electric field we have following relation

E = \frac{kq}{x}^2

according to question E = 0

FROM FIGURE

x is the distance from left point charge where electric field is zero

\frac{k21}{x}^2 = \frac{k47}{0.5-x}^2

solving for x we get

\frac{0.5}{x} = 1+ \sqrt{\frac{47}{21}}

x = 0.200 m

b)electric field at half way mean x =0.25

E =\frac{k*21*10^{-6}}{0.25^2} -\frac{k*47*10^{-6}}{0.25^2}

E = 3.84*10^{-4} N/C

6 0
3 years ago
Read 2 more answers
Other questions:
  • A car, initially traveling at 15 meters per second
    15·1 answer
  • An electric fan is turned off, and its angular velocity decreases uniformly from 720 rev/min to 200 rev/min in a time interval o
    11·1 answer
  • When a physical change occurs, the mass of the substance is conserved. This means that the total mass of the substance remains t
    5·1 answer
  • Suppose a soup can is made from a sheet of steel19 which is .13 mm thick. If the can is 11 cm high and 6 cm in diameter, use dif
    5·1 answer
  • A girl of mass 55 kg throws a ball of mass 0.80 kg against a wall. The ball strikes the wall horizontally with a speed of 25 m/s
    7·2 answers
  • During a neighborhood baseball game in a vacant lot, a particularly wild hit sends a 0.148 kg baseball crashing through the pane
    14·1 answer
  • What did James Madison foresee as an important element of the political system?
    11·2 answers
  • Which of the following plays a major role in creating surface currents?
    9·2 answers
  • Tarzan (who has mass 80.0 kg) is running across the jungle floor with speed 7.00 m/s as
    8·1 answer
  • Can someone please help with this problem?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!