Newtons 1st law of motion states that the object will continue to move at its present speed and direction until an outside force acts upon it.
So unless the objects inside the car are restrained, they will continue moving at whatever speed the car is traveling at, even if the car is stopped by a crash.
Answer:
Explanation:
Using the tension in the spring and the force of the tension can by describe by
T = kx
, T = mg
Therefore:
With two springs, let, T1 be the tension in each spring, x1 be the extension of each spring. The spring constant of each spring is 2k so:
Solve to x1
Easy !
Take any musical instrument with strings ... a violin, a guitar, etc.
The length of the vibrating part of the strings doesn't change ...
it's the distance from the 'bridge' to the 'nut'.
Pluck any string. Then, slightly twist the tuning peg for that string,
and pluck the string again.
Twisting the peg only changed the string's tension; the length
couldn't change.
-- If you twisted the peg in the direction that made the string slightly
tighter, then your second pluck had a higher pitch than your first one.
-- If you twisted the peg in the direction that made the string slightly
looser, then your second pluck had a lower pitch than the first one.
Answer:
0.34 m
Explanation:
From the question,
v = λf................ Equation 1
Where v = speed of sound, f = frequency, λ = Wave length
Make λ the subject of the equation
λ = v/f............... Equation 2
Given: v = 340 m/s, f = 500 Hz.
Substitute these values into equation 2
λ = 340/500
λ = 0.68 m
But, the distance between a point of rarefaction and the next compression point, in the resulting sound is half wave length
Therefore,
λ/2 = 0.68/2
λ/2 = 0.34 m
Hence, the distance between a point of rarefaction and the next compression point, in the resulting sound is 0.34 m