Answer:
The optimum wavelength = (8.863 × 10⁻⁷) m = 886.3 nm
Explanation:
The light that will generate the photovoltaic energy of 1.4 eV will must have that amount of energy
Energy of light waves is given as
E = hf
h = Planck's constant = (6.626 × 10⁻³⁴) J.s
f = Frequency of the light
The frequency is then further given as
f = (c/λ)
c = speed of light = (3.0 × 10⁸) m/s
λ = wavelength of the light = ?
E = (hc/λ)
λ = (hc/E)
Energy = E = 1.4 eV = 1.4 × 1.602 × 10⁻¹⁹ = (2.2428 × 10⁻¹⁹) J
λ = (6.626 × 10⁻³⁴ × 3.0 × 10⁸)/(2.2428 × 10⁻¹⁹)
λ = (8.863 × 10⁻⁷) m = 886 nm
Hope this Helps!!!
Electrical energy is used to run the fan
Here as per given condition 750 J of electrical energy is used to run the fan which is converted into Kinetic energy as 400 J
So here we can see that 350 J of energy is lost against many other type of frictional and resistive loses.
So here we can say that out of 750 J of energy only 400 J is used to run the fan and rest amount of energy is lost against friction.
also we can say that efficiency of this fan will be



The fragment of an asteroid or any interplanetary material is known as a a : D. Meteroid
Human came in contact with this material mostly because it penetrate the atmosphere and fall within the earth surface
hope this helps
Answer:
1 Proton, 1 Electron, No Neutrons
Group 1, Period 1
Gases