Answer:



Explanation:
= Torque = 36.5 Nm
= Initial angular velocity = 0
= Final angular velocity = 10.3 rad/s
t = Time = 6.1 s
I = Moment of inertia
From the kinematic equations of linear motion we have

Torque is given by

The wheel's moment of inertia is 
t = 60.6 s
= 10.3 rad/s
= 0

Frictional torque is given by

The magnitude of the torque caused by friction is 
Speeding up

Slowing down

Total number of revolutions


The total number of revolutions the wheel goes through is
.
Answer:
The correct answer is
a) 1, 2, 3
Explanation:
In rolling down an inclined plane, the potential energy is Transferred to both linear and rotational kinetic energy thus
PE = KE or mgh = 1/2×m×v² + 1/2×I×ω²
The transformation equation fom potential to kinetic energy is =
m×g×h = 
= 
= 
=
Therefore the order is with increasing rotational kinetic energy hence
the first is the sphere 1 followed by the disc 2 then the hoop 3
the correct order is a, 1, 2, 3
Answer:
if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
Explanation:
The air in the tube can be considered an ideal gas,
P V = nR T
In that case we have the tube in the air where the pressure is P1 = P_atm, then we introduce the tube to the water to a depth H
For pressure the open end of the tube is
P₂ = P_atm + ρ g H
Let's write the gas equation for the colon
P₁ V₁ = P₂ V₂
P_atm V₁ = (P_atm + ρ g H) V₂
V₂ = V₁ P_atm / (P_atm + ρ g h)
If the air obeys Boyle's law e; volume within the had must decrease due to the increase in pressure, if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
The main assumption is that the temperature during the experiment does not change
Answer:
Volcanic Eruptions
Explanation:
The volcano can start showing signs that it may be about to explode.