Answer:
Explanation:
This question is based on the Law of Conservation of Angular Momentum.
Angular momentum (L) equals the moment of inertia (I) times the angular speed (ω).
L = Iω
If momentum is conserved,
I₁ω₁ = I₂ω₂
Data:
I₁ = 3.5 kg·m²s⁻¹
ω₁ = 6.0 rev·s⁻¹
I₂ = 0.70 kg·m²s⁻¹
Calculation:

It had a gravitational force that acts so that it pulls Earth in an orbital, which explains temperature variations throughout the years.
Answer:
4units
Explanation:
To calculate the total distance the beam will travel along this path, you will use the formula for calculating the distance between two coordinates expressed as;
D = √(x2-x1)²+(y2-y1)²
Given the coordinate points
(3,5) and (7,5)
Substitute
D = √(7-3)²+(5-5)²
D = √(7-3)²+0²
D = √4²
D = √16
D = 4
Hence the total distance the beam will travel along this path is 4units
Answer:
The white car will cover the most distance every second.
Explanation:
The formula for the uniform speed of an object is given as follows:

where,
s = distance covered by the object
v = speed of the object
t = time required
Now, if we assume time to be constant at 1 s. Then the distance covered by each car will be directly proportional to the speed of the car. Hence, the car with the greatest speed will travel the greatest distance in 1 second.
We, have:
Speed of white car > Speed of red car > Speed of green car
<u>Therefore, the white car will cover the most distance every second.</u>