The velocity at the maximum height will always be 0. Therefore, you will count your final velocity as 0, and your initial velocity as 35 m/s. Next, we know that the acceleration will be 9.8 m/s^2. How? Because the ball is thrown directly upward, and the only force acting on it will be the force of gravity pushing it back down.
The formula we use is h = (Vf^2 - Vi^2) / (2*-9.8m/s^2)
Plugging everything in, we have h = (0-1225)/(19.6) = 62.5 meters is the maximum height.
Answer:
Inductance, L = 0.0212 Henries
Explanation:
It is given that,
Number of turns, N = 17
Current through the coil, I = 4 A
The total flux enclosed by the one turn of the coil, 
The relation between the self inductance and the magnetic flux is given by :


L = 0.0212 Henries
So, the inductance of the coil is 0.0212 Henries. Hence, this is the required solution.
Kinetic energy is never negative, but potential energy can be.
Potential energy depends on height above some reference level,
and you can pick any level you want as the reference. So, if the
object is below the reference level you pick, then its potential
energy relative to your reference level is negative.
What that means is: You have to lift it / do work on it / give it more
energy than it has now ... in order to move it to the reference level.
(That's exactly the situation with electrons bound to an atom. Their
energy is considered negative, because we have to do work and
give them more energy to rip them away from the atom.)
_____________________________________
Regarding the other choices:
-- Kinetic energy is scalar ... Yes. So is potential energy.
-- Kinetic energy increases with height ...
No. It doesn't, but potential energy does.
-- Kinetic energy depends on position ...
No. It doesn't, but potential energy does.
Answer:
<em>Billow clouds provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents.</em>
Explanation:
Billow clouds are created in regions that are not stable in a meteorological sense. They are frequently present in places with air flows, and have marked vertical shear and weak thermal separation and inversion (colder air stays on top of warmer air). Billow clouds are formed when two air currents of varying speeds meet in the atmosphere. They create a stunning sight that looks like rolling ocean waves. Billow clouds have a very short life span of minutes but they provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents, which although may not affect us on the ground but is a concern to aircraft pilots. The turbulence due to the Billow wave is the only logical explanation for the loss of 500 m in altitude of the plane.
Yes, friction does exist in space. Friction has nothing to do with the earth's atmosphere. It exists everywhere in the universe. <span />