Answer:
speed of each marble after collision will be 1.728 m/sec
Explanation:
We have given mass of the marble 
Velocity of marble 
Its collides with other marble of mass 25 gram
So mass of other marble 
Second marble is at so 
We have to find the velocity of second marble
From momentum conservation we know that
, here v is common velocity of both marble after collision
So 
v = 1.428 m /sec
So speed of each marble after collision will be 1.728 m/sec
To solve the problem it is necessary to apply the concepts related to the conservation of energy through the heat transferred and the work done, as well as through the calculation of entropy due to heat and temperatra.
By definition we know that the change in entropy is given by

Where,
Q = Heat transfer
T = Temperature
On the other hand we know that by conserving energy the work done in a system is equal to the change in heat transferred, that is

According to the data given we have to,




PART A) The total change in entropy, would be given by the changes that exist in the source and sink, that is



On the other hand,



The total change of entropy would be,



Since
the heat engine is not reversible.
PART B)
Work done by heat engine is given by



Therefore the work in the system is 100000Btu
Answer:
Convection is the transfer of thermal energy from one place to another by the movement of gas or liquid particles. How does this happen? As a gas or liquid is heated, the substance expands. This is because the particles in liquids and gases gain kinetic energy when they are heated and start to move faster.
The angular velocity of the wheel at the bottom of the incline is 4.429 rad/sec
The angular velocity (ω) of an object is the rate at which the object's angle position is changing in relation to time.
For a wheel attached to an incline angle, the angular velocity can be computed by considering the conservation of energy theorem.
As such the total kinetic energy (K.E) and rotational kinetic energy (R.K.E) at a point is equal to the total potential energy (P.E) at the other point.
i.e.
P.E = K.E + R.K.E







Therefore, we can conclude that the angular velocity of the wheel at the bottom of the incline is 4.429 rad/sec
Learn more about angular velocity here:
brainly.com/question/1452612