Thermal energy is an example of kinetic energy<span>, as it is due to the motion of particles, with motion being the key. Thermal energy results in an object or a system having a temperature that can be measured. Thermal energy can be transferred from one object or system to another in the form of heat.</span>
Take the 72 g and divid it by 6 which would equal 12 g each
To determine, the final velocity we use one kinematic equation. It would be 2ax = vf^2 - v0^2. The initial velocity would be zero since it starts from rest. Therefore, the equation would be:
vf = √(2ax) where a is the acceleration ( a = g ) and x is the height
vf = √(2)(9.8)(25)
vf = - 22.14 m/s
Answer:
24445.85 J/s
Explanation:
Area, A = 300 m^2
T = 33° C = 33 + 273 = 306 k
To = 18° C = 18 + 273 = 291 k
emissivity, e = 0.9
Use the Stefan's Boltzman law

Where, e be the energy radiated per unit time, σ be the Stefan's constant, e be the emissivity, T be the temperature of the body and To be the absolute temperature of surroundings.
The value of Stefan's constant, σ = 5.67 x 10^-8 W/m^2k^4
By substituting the values

E = 24445.85 J/s