There are 1.93 x 10²⁴ particles
<h3>Further explanation</h3>
Given
3.2 moles of Neon gas
Required
Number of particles
Solution
The mole is the number of particles(molecules, atoms, ions) contained in a substance
<em>1 mol = 6.02.10²³ particles
</em>
Can be formulated
N=n x No
N = number of particles
n = mol
No = Avogadro's = 6.02.10²³
So the number of particles for 3.2 moles :
N = 3.2 x 6.02.10²³
N = 1.93 x 10²⁴
or
we can describe it using Avogadro's number conversion factor

Explanation: This is a reaction of oxidation of
in the presence of acidified
. Acidified
is a strong oxidizing agent.
To balance out the
on the reactant side, we write
on the product side.
Balancing out the following reaction gives us:

Here we have explain that the maximum possible electrons present in nitrogen valence shell is 8 whereas in phosphorous 12 valence electrons are present.
Although both nitrogen (N) and phosphorous (P) belongs to the same series there are several properties which are different between both the element. The number of electrons present in nitrogen is seven which are present in the -s and -p orbitals. The electronic configuration of nitrogen is 1s²2s²2p³. In which the outermost electrons are the valence electrons i.e. 5 valence electrons are present. The maximum orbitals are possible under the principal quantum number 2 are -s and -p orbitals. Now the maximum capacity of the p orbital to contain 6 electrons, as it is half filled in nitrogen another 3 electrons can be incorporated. Thus the maximum number of electrons can be present in nitrogen is 10 among which 8 is the valence electrons.
On the other hand there are 15 electrons in phosphorous the electronic configuration is 1s²2s²2p⁶3s²3p³. Now the principal quantum number 3 can have three orbitals -s, -p and -d. So another 13 electrons can be incorporated (3 in -p orbital and 10 in -d orbital) among which upto 12 electrons can be its valence electrons.
Molecular equation
Hg₂(NO₃)₂ (aq) + KI(aq) ⇒Hg₂I₂(s) + 2KNO₃(aq)
Total Ionic equation
Hg²⁺(aq) + 2NO³⁻(aq) + 2K⁺aq) ⇒Hg₂I₂(s) + 2K⁺(aq) + NO³⁻ (aq)
Net Ionic equation
Hg²⁺(aq) + 2I⁻(aq) ⇒ Hg₂I₂(s)
<h3>What is the molecular equation?</h3>
Sometimes, a balanced equation is all that is used to refer to a chemical equation. Any ionic substances or acids are represented using their chemical formulas as neutral compounds in a molecular equation. Each substance's state is described in parenthesis after the formula. A complete ionic equation also contains the spectator ions, whereas a net ionic equation just displays the chemical species that are involved in a reaction.
The steps listed below can be used to determine the net ionic equation for a specific reaction:
Include the states of each chemical in the balanced molecular equation for the reaction.
To know more about the molecular equation, visit:
brainly.com/question/14286552
#SPJ4
N₂H₄ :
N = - 2
H = + 1
2 * ( -2 ) + ( 1 * 4 ) = - 4 + 4 = 0
hope this helps!