Hello Gary My Man!
Well, as you can clearly see
<span>The atomic number of an element is basically the number of protons it has. So yes, for every element this is different. Now, the mass number of an element as known, is the number of protons+the number of neutrons. So theoretically as we can see, this number should be a whole number, but since there are different isotopes (atoms of the same element with different numbers of neutrons) of each element, most periodic tables take account of that, so they often include decimals as seen.
So in Short, ALL</span> the atoms of a particular element have the SAME EXACT atomic number<span> (</span>number<span> of protons of course). The </span>atoms of different elements have very different numbers of protons. And of course, the MASS number of an atom is the TOTAL number as known, of protons and of course, the neutrons it contains in it.
I Hope my answer has come to your Help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead! :)
(Ps. Mark As Brainliest IF Helped!)
-TheOneAboveAll :D
Answer: Potential energy is converted to kinetic energy and back again.
Explanation:At points 1 and 3, the pendulum stops moving, and its mechanical energy is purely potential. At point 2, the pendulum is moving the fastest, and its mechanical energy is purely kinetic. Therefore, as the pendulum moves from point 1 to point 3, its potential energy is first converted to kinetic energy, then back to potential.
Answer: gas molecules will hit the container walls more frequently and with greater force
Explanation:
According to the postulates of kinetic molecular theory:
1. The pressure exerted by a gas in a container results from collisions between the gas molecules and the container walls.
2. The average kinetic energy of the gas molecules is proportional to the kelvin temperature of the gas.
When the temperature is increased, so the average kinetic energy and the rms speed also increase. This means that the gas molecules will hit the container walls more frequently and with greater force because they are all moving faster. This increase the pressure.
The volume increases when the balloon temperature increases.
<u>Explanation:</u>
-10 F is converted into Kelvin as 249 K.
0°C is nothing but 0+ 273 = 273 K
And the room temperature is 25°C which is converted into Kelvin as 273 + 25 = 298 K.
249 K is below room temperature.
As per the Charles' law volume and temperature are directly proportional to each other, when the pressure of the gas remains constant.
V ∝ T
As the balloon temperature increases, the volume also increases.