1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stira [4]
2 years ago
7

In what ways will the addition of earth worms most likely affect the terrarium?

Chemistry
2 answers:
Gre4nikov [31]2 years ago
4 0

Answer: The soil biota benefits soil productivity and contributes to the sustainable function of all ecosystems. The cycling of nutrients is a critical function that is essential to life on earth. Earthworms (EWs) are a major component of soil fauna communities in most ecosystems and comprise a large proportion of macrofauna biomass. Their activity is beneficial because it can enhance soil nutrient cycling through the rapid incorporation of detritus into mineral soils. In addition to this mixing effect, mucus production associated with water excretion in earthworm guts also enhances the activity of other beneficial soil microorganisms. This is followed by the production of organic matter. So, in the short term, a more significant effect is the concentration of large quantities of nutrients (N, P, K, and Ca) that are easily assimilable by plants in fresh cast depositions. In addition, earthworms seem to accelerate the mineralization as well as the turnover of soil organic matter. Earthworms are known also to increase nitrogen mineralization, through direct and indirect effects on the microbial community. The increased transfer of organic C and N into soil aggregates indicates the potential for earthworms to facilitate soil organic matter stabilization and accumulation in agricultural systems, and that their influence depends greatly on differences in land management practices. This paper summarises information on published data on the described subjects.

Explanation: Protection of the soil habitat is the first step towards sustainable management of its biological properties that determine long-term quality and productivity. It is generally accepted that soil biota benefits soil productivity but very little is known about the organisms that live in the soil and the functioning of the soil ecosystem. The role of earthworms (EWs) in soil fertility is known since 1881, when Darwin (1809–1882) published his last scientific book entitled “The formation of vegetable mould through the action of worms with observations on their habits.’’ Since then, several studies have been undertaken to highlight the soil organisms contribution to the sustainable function of all ecosystems [1]. Soil macrofauna, such as EWs, modify the soil and litter environment indirectly by the accumulation of their biogenic structures (casts, pellets, galleries, etc.) (Table 1). The cycling of nutrients is a critical ecosystem function that is essential to life on earth. Studies in the recent years have shown increasing interest in the development of productive farming systems with a high efficiency of internal resource use and thus lower input requirement and cost [2, 3]. At present, there is increasing evidence that soil macroinvertebrates play a key role in SOM transformations and nutrient dynamics at different spatial and temporal scales through perturbation and the production of biogenic structures for the improvement of soil fertility and land productivity [4, 5]. EWs are a major component of soil fauna communities in most natural ecosystems of the humid tropics and comprise a large proportion of macrofauna biomass [6]. In cultivated tropical soils, where organic matter is frequently related to fertility and productivity, the communities of invertebrates—especially EWs—could play an important role in (SOM) dynamics by the regulation of the mineralization and humification processes [7–9]. The effects of EWs on soil biological processes and fertility level differ in ecological categories [12]. Anecic species build permanent burrows into the deep mineral layers of the soil; they drag organic matter from the soil surface into their burrows for food. Endogeic species live exclusively and build extensive nonpermanent burrows in the upper mineral layer of soil, mainly ingested mineral soil matter, and are known as “ecological engineers,’’ or “ecosystem engineers.’’ They produce physical structures through which they can modify the availability or accessibility of a resource for other organisms [13]. Epigeic species live on the soil surface, form no permanent burrows, and mainly ingest litter and humus, as well as on decaying organic matter, and do not mix organic and inorganic matter [14]. In the majority of habitats and ecosystems (Table 2), it is usually a combination of these ecological categories which together or individually are responsible for maintaining the fertility of soils [15–17]. EWs influence the supply of nutrients through their tissues but largely through their burrowing activities; they produce aggregates and pores (i.e., biostructures) in the

OleMash [197]2 years ago
3 0
Significantly modify the physical, chemical and biological properties of the soil profile.
You might be interested in
Explain why neptune cannot be seen without a telescope
Law Incorporation [45]
Because it's to little
8 0
3 years ago
How many moles of carbon, hydrogen, and oxygen are present in a 100-g sample of ascorbic acid?
Y_Kistochka [10]

There are:

3.41 moles of C

4.54 moles of H

3.40 moles of O.

Why?

To solve the problem, the first thing that we need to do is to write the chemical formula of the ascorbic acid.

C_{6}H_{8}O_{6}

Now, we know that there are 100 grams of the compound, so, the masses of each element will represent the percent in the compound.

We have that:

C_{6}=12.0107g*6=72.08g\\\\H_{8}=1.008g*8=8.064g\\\\O_{6}=15.999g*6=95.994g\\\\C_{6}H_{8}O_{6}=72.08g+8.064g+95.994g=176.138g

To know the percent of each element, we need to to the following:

C=\frac{72.08g}{176.138g}*100=0.409*100=40.92(percent)\\\\H=\frac{8.064g}{176.138g}*100=4.58(percent)\\\\O=\frac{95.994}{176.138g}*100=54.49(percent)

So, we know that for the 100 grams of the compound, there are:

40.92 grams of C

4.58 grams of H

54.49 grams of O

We know the molecular masses of each element:

C=12.0107\frac{g}{mol}\\\\H=1.008\frac{g}{mol}\\\\O=15.999\frac{g}{mol}{mol}

Now, to calculate the number of moles of each element, we need to divide the mass of each element by the molecular mass of each element:

C=\frac{40.92g}{12.010\frac{g}{mol}}=3.41mol\\\\H=\frac{4.58g}{1.008\frac{g}{mol}}=4.54mol\\\\O=\frac{54.49g}{15.999\frac{g}{mol}}=3.40mol

Hence, we have that there are 3.41 moles of C, 4.54 moles of H, and 3.40 moles of O.

Have a nice day!

5 0
3 years ago
Chem. Assignment <br><br> I need help...with answers 1-6 thanks
Anna11 [10]

Answer:

1. an educated guess

2. data

3. what changes in experiment

4. what stays the same in both groups

5. the group where nothing changes, normal

6. group with independent variable, what's being tested

8 0
3 years ago
Select the answer that CANNOT be used to fill in the blank in the following sentence:
Mashcka [7]

Answer:

3. move more quickly

Explanation:

...................

6 0
3 years ago
Steel is an example of a pure substance because it is made up of two different metals melted together. (4 points) True False
Lunna [17]

Answer:

false

Explanation:

3 0
3 years ago
Other questions:
  • Draw all the structural isomers for the molecular formula c4h9br. Be careful not to draw any structures by crossing one line ove
    9·1 answer
  • In what way would readings from a digital thermometer be preferable to those from a liquid-based thermometer?
    9·2 answers
  • Which of the following elements are characterized by having full outermost s and p
    15·1 answer
  • What is a short description of oxygenated blood flow ?
    7·2 answers
  • Why are all organs are in the alimentary canal important in digesting food
    9·1 answer
  • Discuss the advantages and disadvantages of using hydropower for large-scale energy production.
    13·1 answer
  • Some transport processes use transport proteins in the plasma membrane, but do not require atp. this type of transport is known
    8·1 answer
  • Select the correct locations on the periodic table.
    8·2 answers
  • Help me real quick !!
    13·1 answer
  • Who developed the orbital model of the atom?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!