<u>Answer:</u> The molality of the solution is 0.1 m.
<u>Explanation:</u>
To calculate the molality of solution, we use the equation:

Where,
= Given mass of solute = 27.1 g
= Molar mass of solute = 27.1 g/mol
= Mass of solvent = 100 g
Putting values in above equation, we get:

Hence, the molality of the solution is 0.1 m.
Answer:
The energy levels in an atom are similar to the rungs of a ladder, but they get closer together as they get farther from the nucleus. For an electron to move from one energy level to the next higher level, it must gain the right amount of energy. If less than that amount is available, the electron stays where it is.
Explanation:
Hope this helped! Goodluck on your test or whatever you're doing! Stay safe ♥♥♥
A molecule that has a central atom surrounded by three single bond pairs and one unshared pair would have a trigonal pyramidal shape. The electon arrangement of this is called tetrahedral. It involves one atom located at the apex and at the corners are three atoms with a trigonal base. An example would be ammonia or NH3. Nitrogen has five valence electrons so that it needs to three more electrons to satisfy the octet rule and be stable. It would share electrons with the three nitrogen present. In order, to achieve the most stable geometry, the three atoms of hydrogen would attach with a bond angle of 109 degrees.
When connectors are marked with a combination of metals,
it can be used as a connector of one of the metals or an alloy of the two
metals. So in this case, since the marking is “Al – Cu” where Al is aluminium and
Cu is copper, therefore the answer is:
<span>Yes, it is suitable for use with copper, copper-clad
aluminum, and aluminum conductors.</span>