Answer:
E = 389 MeV
Explanation:
The total energy of particle A, will be equal to the sum of rest mass energy and relative energy of particle A. Therefore,
Total Energy of A = E = Rest Mass Energy + Relative Energy
Using Einstein's Equation: E = mc²
E = m₀c² + mc²
From Einstein's Special Theory of Relativity, we know that:
m = m₀/[√(1-v²/c²)]
Therefore,
E = m₀c² + m₀c²/[√(1-v²/c²)]
E = m₀c²[1 + 1/√(1-v²/c²)]
where,
m₀c² = rest mass energy = 140 MeV
v = relative speed = 0.827 c
Therefore,
E = (140 MeV)[1 + 1/√(1 - (0.827c)²/c²)]
E = (140 MeV)(2.78)
<u>E = 389 MeV</u>
Answer:
Springs are made of a variety of materials including copper and various forms of steel. The most common is high carbon steel as it is cheap, easy to work and a couple of other important properties.
Copper springs exist as well, but copper is more expensive than steel. However, in an environment where corrosion resistance is important, copper springs are a good alternative.
Explanation:
Answer:
speed of electrons = 3.25 ×
m/s
acceleration in term g is 3.9 ×
g.
radius of circular orbit is 2.76 ×
m
Explanation:
given data
voltage = 3 kV
magnetic field = 0.66 T
solution
law of conservation of energy
PE = KE
qV = 0.5 × m × v²
v =
v =
v = 3.25 ×
m/s
and
magnetic force on particle movie in magnetic field
F = Bqv
ma = Bqv
a =
a =
a = 3.82 ×
m/s²
and acceleration in term g
a =
a = 3.9 ×
g
acceleration in term g is 3.9 ×
g.
and
electron moving in circular orbit has centripetal force
F =
Bqv =
r =
r =
r = 2.76 ×
m
radius of circular orbit is 2.76 ×
m
Answer:
F = 1400 N
Explanation:
It is given that,
Mass of the ball, m = 70 kg
It is moving with an acceleration of 20 m/s². We need to find the force exerted by the ball.
Force is given by the product of mass and acceleration. So,
F = ma

So, the force of 1400 N is exerted by a metal ball.
Rocket fuel will and smoke will emit from the thrusters.