It does produce 'sound' ... a compression wave traveling through the air. But your ears don't hear a sound that's vibrating less than 20 or 30 times every second. If you could swing your pendulum that fast, you could hear the sound of its vibrations pushing the air around.
Answer:
<h2>468,750 J</h2>
Explanation:
The kinetic energy of an object can be found by using the formula

m is the mass
v is the velocity
From the question we have

We have the final answer as
<h3>468,750 J</h3>
Hope this helps you
Answer:
Inverted
Real
Explanation:
u = Object distance = 30 cm
v = Image distance
f = Focal length = 10 cm
Lens Equation
As, the image distance is positive the image is real and forms on the other side of the lens

As, the magnification is negative the image is inverted
When using a simple machine, the benefit of using less force to lift an object is offset by the need to push for a larger distance so that energy can be conserved.
<u>Explanation:
</u>
A simple machine utilized for completing the works easily. So in order for easy and quick completion of works, these machines may increase the amount of force acting on the object by increasing the velocity or speed of the machine. As velocity term is present so the machines may also change the directions of force acting on the object of concern to do the work soon just like pulley.
Also other way of completing the work with less input force requirement is by increasing the distance or area of action for the force acting on it. As work done is a measure of acting force on a region multiplied with the displacement occurred with that force.
It can be known that force seems to be inversely proportional to distance or area of action. So if we need to use less force to lift an object, it is offset by the need to push for a larger distance in order to conserve the energy.
Answer:
<em>D. The acceleration after it leaves the hand is 10 m/s/s downwards
</em>
Explanation:
<u>Vertical Throw
</u>
When an object is thrown upwards, it describes a special type of motion ruled only by gravity.
When the ball is launched, it has its maximum speed upwards. The acceleration of gravity is always the same because it's a constant value near our planet's surface. The object starts to lose speed since the acceleration of gravity is pointed downwards and makes the object stop in the mid-air at its maximum height, where the speed is zero. Then, the object starts to fall and regain speed, this time downwards until it reaches back the launching point at the very same speed it was launched, but in the opposite direction.
The time it takes to reach its maximum height is the same it takes to return to the catching point, 2 seconds later.
With all these concepts in mind, we state that:
<em>D. The acceleration after it leaves the hand is 10 m/s/s downwards </em>
The other options are not correct because:
A. The acceleration is never upwards
B. The acceleration is never 0
C. Both times are equal