Answer:
1793.7m
Explanation:
From the principle of conservation of energy; the kinetic energy substended by the object equals the potential energy sustain by the object when it gets to its maximum position.
Now the kinetic energy; is
K.E = 1/2 × m × v2
Where m is mass
v is velocity
Hence.
K.E = 1/2 × 2.25 × (187.5)^2
Now this should be same with the potential energy which is given as;
P.E = m× g× h
Where m is mass of object
g is acceleration of free fall due to gravity = 9.8m/S2
h is maximum height substain by the object.
Hence P.E = 2.25 × 9.8 × h
From the foregoing analysis of energy conversation it implies;
1/2 × 2.25 × (187.5)^2 =2.25 × 9.8 × h
=> 1/2 × (187.5)^2 = 9.8 × h
=>1/2 × (187.5)^2 / 9.8 = h
=> 1793.69m = h
h= 1793.69m
h =1793.7m to 1 decimal place
Answer:
f'=5.58kHz
Explanation:
This is an example of the Doppler effect, the formula is:

Where f is the actual frequency,
is the observed frequency,
is the velocity of the sound waves,
the velocity of the observer (which is negative if the observer is moving away from the source) and
the velocity of the source (which is negative if is moving towards the observer). For this problem:


The solution for this problem is:
If they feel 50% of their weight that means that the
centripetal force is also 50% of their weight 1g - 0.5g = 0.5g
Then 0.5* 9.8m/s² * 18m = 88.2 would be v²
Then get the square root, the answer would be:
and v = 9.391 m/s is the answer.
Question is from B to C
Answer: (b) 1.5m/s
x1=3m, x2=9m
t1=1s, t2=5s
Displacement, ∆x=(9-3)m=6m
Time elapsed, ∆t=(5-1)s=4s
So average velocity v =∆x/∆t=6/4=1.5m/s
Explanation:
You need two, maybe three things - something that's vibrating, a medium for those vibrations to propagate in, and a listener to hear it or recording equipment to pick it up