Remember that multiples are numbers that can be divided by a number without a remainder so in this case you could add 15 by 15 to find what number in this set is a multiple of 15.




Therefore your answer is "60."
Hope this helps.
Answer:
1. y=(x+3)^3. Zero: x=-3 multiplicity 3.
2. y=(x-2)^2 (x-1). Zeros: x=2 multiplicity 2; x=1 multiplicity 1.
3. y=(2x+3)(x-1)^2. Zeros: x=-3/2 multiplicity 1; x=1 multiplicity 2.
Step-by-step explanation:
1. y=(x+3)^3
![y=0\\ (x+3)^3=0\\ \sqrt[3]{(x+3)^3}=\sqrt[3]{0}\\ x+3=0\\ x+3-3=0-3\\ x=-3](https://tex.z-dn.net/?f=y%3D0%5C%5C%20%28x%2B3%29%5E3%3D0%5C%5C%20%5Csqrt%5B3%5D%7B%28x%2B3%29%5E3%7D%3D%5Csqrt%5B3%5D%7B0%7D%5C%5C%20x%2B3%3D0%5C%5C%20x%2B3-3%3D0-3%5C%5C%20x%3D-3)
Zero: x=-3 multiplicity 3.
2. y=(x-2)^2 (x-1)

Zeros: x=2 multiplicity 2; x=1 multiplicity 1
3. y=(2x+3)(x-1)^2

Zeros: x=-3/2 multiplicity 1; x=1 multiplicity 2.
Answer:
need more info
Step-by-step explanation: