Average speed of the driver is given as

if he moved for total time t = 3.5 hours
so the distance between the tow is given as



so the distance between St. Louis and Chicago is 224 miles
Answer:
Part a)

Part b)
if both sides are rough then it will reach the same height on the other side because the energy is being conserved.
Part c)
Since marble will go to same height when it is rough while when it is smooth then it will go to the height

so on smooth it will go to lower height
Explanation:
As we know by energy conservation the total energy at the bottom of the bowl is given as

here we know that on the left side the ball is rolling due to which it is having rotational and transnational both kinetic energy
now on the right side of the bowl there is no friction
so its rotational kinetic energy will not change and remains the same
so it will have

now we know that


so we have




so the height on the smooth side is given as

Part b)
if both sides are rough then it will reach the same height on the other side because the energy is being conserved.
Part c)
Since marble will go to same height when it is rough while when it is smooth then it will go to the height

so on smooth it will go to lower height
When your Contrasting multiple objects, your looking for any differences that may or may not be their. Think Compare and Contrast if that helps, The answer to this is A
Answer:

Explanation:
Given that

From the diagram

By differentiating with time t

When x= 10 m

θ = 64.53°
Now by putting the value in equation



Therefore rate of change in the angle is 0.038\ rad/s
Answer:
P.E = 0.068 J = 68 mJ
Explanation:
First we need to find the height attained by the ball toy. For this purpose, we will be using 3rd equation of motion:
2gh = Vf² - Vi²
where,
g = -9.8 m/s² (negative sign due to upward motion)
h = height attained by the ball toy = ?
Vf = Final Velocity = 0 m/s (since it momentarily stops at the highest point)
Vi = Initial Velocity = 3 m/s
Therefore,
2(-9.8 m/s²)h = (0 m/s)² - (3 m/s)²
h = (9 m²/s²)/(19.6 m/s²)
h = 0.46 m
Now, the gravitational potential energy of ball at its peak is given by the following formula:
P.E = mgh
P.E = (0.015 kg)(9.8 m/s²)(0.46 m)
<u>P.E = 0.068 J = 68 mJ</u>